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1 Motivating example

We use Swedish data downloaded from the Human Mortality Database (HMD) to motivate the need for
a high speed, low storage method of smoothing. We suppose that the matrix Y = (yi,j), i = 1, . . . , na,
j = 1, . . . , ny, contains the number of deaths in the j th year at the i th age. In our example, we consider
ages xa = (xa,1, . . . , xa,na)′ = (10, . . . , 90)′ and years xy = (xy,1, . . . , xy,ny)′ = (1900, . . . , 2000)′. The
matrix E = (ei,j), na × ny, contains the corresponding exposed to risk, ie, the total time lived at the
age xa,i in year xy,j . Let M = (mi,j) = (log(yi,j/ei,j)), na×ny, be the matrix of the observed forces of
mortality (measured on the log scale). The rows and columns of Y , E and M are indexed by age xa

and year xy respectively. The left panel of Figure 1, a plot of the observed mortality surface, suggests
the following: the force of mortality (1) has fallen steadily throughout the 20th century, (2) it increases
steadily with age, except that (3) it increases then decreases rapidly around the age of twenty (4) it
exhibited a very large systematic increase around the end of the first world war and (5) it is subject
to random departure from these underlying patterns.

It is natural to suppose that underlying the observed mortality surface in Figure 1 is a smooth
mortality surface. We estimate this smooth surface with the P -spline system of Eilers & Marx (1996).
Let {Ba,1, . . . , Ba,ca} be a B-spline basis of dimension ca defined along age and let Ba = Ba(xa) =
(Ba,j(xa,i)), na × ca, be the resulting regression matrix. Similarly, let {By,1, . . . , By,cy} be a B-spline
basis of dimension cy defined along year and let By = By(xy) = (By,j(xy,i)), ny × cy, be the resulting
regression matrix. Then a suitable model matrix for 2-d smoothing is given by the Kronecker product

(1) B = By ⊗Ba, nany × cacy.

The right panel of Figure 1 is a simplified plot of the underlying 2-d basis. Each of the cacy regression
coefficients is associated with the summit of a 2-d B-spline in the right panel of Figure 1. Thus, it is
natural to think of these coefficients as arranged in a ca× cy matrix, say Θ. The P -spline system now
consists of choosing a rich basis in both age and year. Smoothness is ensured by penalizing adjacent
coefficients in the rows and columns of Θ; the appropriate penalty matrix (Currie et al., 2004) is

(2) P = λaIcy ⊗D′
aDa + λyD

′
yDy ⊗ Ica ,

where In is the identity matrix of size n, Da, (ca − da) × ca, and Dy, (cy − dy) × cy, are difference
matrices of order da and dy respectively (often we take da = dy = 2). The difference matrices Da and
Dy penalize the coefficients in the columns and rows of Θ and λa and λy are the smoothing parameters
in the age and year directions; notice that the P -spline system allows non-isotropic smoothing. Finally
we suppose that the numbers of deaths yi,j are realizations of independent Poisson distributions with
means µi,j = ei,jφi,j where φi,j is the force of mortality at age xa,i in year xy,j .

The standard approach to fitting this model is to vectorize the data and interpret the model as
a penalized generalized linear model (PGLM). We have the following model structure and estimation
algorithm

• Data: vectors y = vecY , deaths, and e = vecE, exposures
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Figure 1: Left: Observed mortality surface for Swedish males. Right: Simplified 2-d B-spline basis.

• Model: a model matrix B = By ⊗Ba of B-splines, a parameter vector θ, θ = vec (Θ) and a
link function

(3) µ = E(y), log µ = log e + Bθ.

• Error distribution: Poisson.

• Algorithm: Penalized scoring algorithm

(4) (B′W̃δB + P )θ̂ = B′W̃δz̃

where z̃ = Bθ̃ + W̃δ
−1

(y − µ̃) is the working vector, W̃δ is a diagonal matrix of weights and P

is the penalty matrix, (2).

This is a medium size problem: the length of y is 81 × 101 = 8181 and a typical model matrix with
ca = 15 and cy = 20 is 8181 × 300. The smoothing parameters, λa and λy, must now be chosen in
this PGLM framework. This is quite possible but we can see that, with a larger problem in higher
dimensions where three or more smoothing parameters must be chosen, we may start to run into
serious difficulties both in computational time and even in storage.

From an aesthetic point of view there is something unnatural about the above structure. Our
data and coefficients are matrices, and our model matrix is a product, yet the above analysis makes
no use of these structures. We show in the next section that by adopting an array approach we can
solve the storage problem and reduce computational time by up to orders of magnitude.

2 Generalized linear array models or GLAM

The key formula follows from a well known property of Kronecker products

(5) [By ⊗Ba]θ, nany × 1 ≡ BaΘB′
y, na × ny,

where ‘≡’ indicates both sides have the same elements, although their dimensions are different. On
the left we use the full model matrix, B = By ⊗ Ba to evaluate Bθ; on the right, we operate on
the matrix of coefficients first by Ba and then by By. This solves the storage problem. The number
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of multiplications required to evaluate the right hand side is also very substantially smaller than is
required on the left hand side. In a large problem this computational saving can be a factor of several
orders of magnitude. We now give the model structure and estimation algorithm for the generalized
linear array model or GLAM approach. In 2-dimensions an array is simply a matrix.

• Data: matrices Y , deaths, and E, exposures.

• Model: a model matrix B = By ⊗Ba of B-splines, a parameter matrix Θ and a link function

(6) log E(Y ) = log E + BaΘB′
y.

• Error distribution: Poisson.

• Algorithm: Penalized scoring algorithm (4) with

Bθ, nany × 1 ≡ BaΘB′
y, na × ny,(7)

B′WδB, cacy × cacy ≡ G(Ba)′WG(By), c2
a × c2

y,(8)

where W , na × ny, is the matrix of weights, ie, vecW = diagWδ. In (8), the function G(·) is
the row-tensor function defined for any matrix X, n× c, as

(9) G(X) =
[
X ⊗ 1′c

] ∗ [
1′c ⊗X

]
, n× c2,

where 1c is a vector of 1’s of length c. We make two comments on the matrix form of this algorithm.
First, (8) achieves the same sequential computation for the weighted inner product B′WδB in the
scoring algorithm (4) as (6) achieves for the linear predictor. Second, the matrix forms on the right-
hand sides of (7) and (8) need to be rearranged into the corresponding vector forms on their respective
left-hand sides. Details of how this is achieved are given in Currie et al, (2006); here, we simply remark
that such rearrangements are very efficient. In summary, GLAM

• is conceptually attractive (it takes advantage of both the data and the model structure),

• has a low footprint (a result of the sequential nature of the algorithm),

• is very fast, and

• generalizes to d-dimensions.

The sequential nature of the GLAM algorithm was first described in Eilers et al. (2006). The array
nature of these algorithms was described in Currie et al. (2006); the acronym GLAM was coined in
this second paper.

3 Examples of GLAMs

In the remainder of this paper we describe a number of applications of GLAM. We will describe the
data, give the linear predictor in GLAM form and report some results.
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Figure 2: Smoothed log mortality for Swedish males

3.1 Modelling mortality

We continue with our introductory example on smoothing Swedish mortality data. We ignore for
the moment the one-off behaviour at the end of the first world war and fit a simple smooth surface
BaΘB′

y. Smoothing parameters are chosen by minimizing the Bayesian Information Criterion (BIC).
Figure 2 gives two cross-sections of the fitted surface. The fitted surface has successfully picked up
the feature around age 20 (often described as the ‘accident hump’) but has failed to catch the feature
in 1918. We will return to this point in section 3.3.

There is an R-package, MortalitySmooth, (Camarda, 2009) for fitting a 2-d mortality surface;
overdispersion of the Poisson counts, a common feature of mortality data, is allowed for. The coding
uses the GLAM algorithms.

3.2 Joint modelling of mortality by lives and amounts

Mortality data in life insurance has some features of its own. Deaths are the number of claims on
policies and exposure is the total time at risk; this is usually referred to as data by lives. Alternatively,
deaths are the total amount claimed and exposure is the total amount at risk; this is usually referred
to as data by amounts. Thus we have deaths and exposure matrices Dl and El on lives, and Da and
Ea on amounts. The force of mortality can then be computed by lives (as in the previous example) or
by amounts. It is generally found that mortality by lives is heavier than mortality by amounts since
those with better mortality have larger insured amounts; this observation is borne out in Figure 3.

Actuaries are interested in forecasting mortality for the purpose of pricing and reserving of
annuities and pensions. The penalty function allows forecasting (see Currie et al. (2004) for details
of how this is done). Here, with two measures of mortality we must take care that any such forecasts
are consistent, ie, do not cross over in the future. We achieve this joint forecasting by taking BaΘB′

y

as the mortality surface by lives and BaΘB′
y + BaΘ̆1′ny

as the mortality surface by amounts. This
is an additive GLAM with the property that the surface by amounts differs from the surface by lives
by a constant amount in time; this constant is a smooth function of age. There are three smoothing
parameters to be chosen (two for the component BaΘB′

y and one for the component BaΘ̆1′ny
. Figure 3

shows the results of fitting this model. See Currie et al. (2004) and Djeundje and Currie (2011) for
further details.
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Figure 3: Smoothed and forecast log mortality by lives and amounts

3.3 Modelling mortality with period shocks

We return to the Swedish mortality data and the problem with the one-off feature in 1918. Rather
than use a model with the observed feature in 1918 built-in we propose a more general model in which
each year can potentially have such a feature. We refer to such features as period shocks or simply
as shocks. We assume that any period shocks are smooth functions of age; we leave the modelling
process to identify them. Kirkby and Currie (2010) proposed an additive GLAM

(10) BaΘB′
y + B̆aΘ̆

which splits the mortality surface into a smooth 2-d surface and (possibly) a number of smooth shocks.
This is a large computationally demanding model since each of ny years has c̆a coefficients. Thus, the
three smoothing parameters must be chosen in the context of a very large model matrix; in Kirkby
and Currie (2010) the model matrix was 8181× 1346.

Figure 4 shows the two components of the additive model (10). The smooth surface in the left
panel of Figure 4 is much smoother than that fitted in section 3.1 since the one-off behaviour in 1918
is now modelled by a shock. The shock to the mortality surface in 1918 was caused by the Spanish
Influenza pandemic which predominately affected the young. The 1918 shock and other smaller shocks
can be seen in the right panel of Figure 4.

3.4 2-d density estimation

GLAM can also be applied in some situations when the data do not obviously lie on a grid, and
2-d density estimation is a good example. We consider the classic 2-d data set on the waiting times
between and durations of eruptions of the Old Faithful geyser. The left panel of Figure 5 shows the
data from which it is evident that data falls into two main regions. We have 272 data points scattered
over a rectangular region. We form a fine 2-d grid of counts. In the example we used waiting time by
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Figure 4: Components of the shock model. Left: the smooth 2-d surface; right: the annual shocks

duration bins of size 1 minute by 1 second which gives 60× 217 = 13020 bins. Our data then consists
of the frequencies of observation in cells: we have 238 counts of 1, 17 of 2, and 12765 (98%) of 0. We
apply 2-d P -spline smoothing with Poisson errors, log link, model matrix Bw(xw) ⊗ Bd(xd) where
xw and xd are the mid-points of the waiting time and duration bins respectively. Figure 5 shows the
fitted contour surface and fitted density. Further details on density estimation with GLAM can be
found in Eilers and Marx (2006). Durban et al. (2006) combine GLAM and mixed models to estimate
multi-dimensional densities while Lambert and Eilers (2006) show how GLAM and Bayesian methods
can also be used here.

3.5 Other applications

One important area where GLAM can be used with advantage is in spatio-temporal smoothing. Lee
and Durban (2011) give an example of smoothing ozone measurements. Data are located at scattered
locations but are measured at monthly intervals. This gives this 3-dimensional problem (two space
dimensions and one time dimension) a 2-dimensional GLAM structure where one GLAM dimension
is space and the other GLAM dimension is time. For further details see Lee and Durban (2011).

We have emphasized the computational advantage of GLAM in this introductory paper. There
is another important aspect: if data have an array structure and models of interest have a row and
column structure then GLAM is the correct way to think about modelling. GLAM is more than a
computational device, it is a structure for modelling.
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ABSTRACT

Data with an array structure are common in statistics (mortality tables and spatio-temporal data
are two important examples). Such data often require smoothing to remove noise and estimate trends.
One natural and attractive approach is to use penalized regression where (a) the basis for the regression
is a Kronecker product of B-splines and (b) the penalty is a roughness penalty on regression coefficients;
this is the P-spline approach of Eilers & Marx. However, such an approach is particularly susceptible
to runaway problems with (a) storage and (b) computational time. Generalized linear array models
(GLAM) were developed precisely to address both these issues. In a conventional GLM you store the
model matrix and then fit the model. Unfortunately, with large amounts of data this model matrix can
get rather large: computation and even storage can be a problem. In GLAM the model matrix is not
stored; the GLAM algorithm works sequentially with the factors of the Kronecker product. Further, the
GLAM algorithm is very fast and can be orders of magnitude quicker than the usual GLM approach
in a large problem. In this paper we first describe the GLAM algorithms and then give an introduction
to a range of applications. These applications include various models for smoothing and forecasting of
mortality tables, density estimation and spatio-temporal smoothing.
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