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1. Introduction

An important problem in environmental sciences is the delineation of polluted zones with respect
to regulatory standards. This can be done by approximating the distribution function of a spatial
random process {Z(s) : s ∈ D ⊂ IRd}, which provides the probability that the variable involved does
not exceed a given threshold. For instance, suppose that one aims to assess soil contamination, then
the approximation of the distribution function allows for the construction of probability risk maps.

Typically, a finite number of spatial locations si is selected, 1 ≤ i ≤ n, where measurements
of the variable involved are taken and used to derive information for the whole observation region,
including the non-sampled locations. In this setting, estimation of the distribution function can be
addressed in a parametric way, by imposing a shape or analytical expression for it. However, the data
provided do not always support the distribution model assumption, so that a nonparametric approach
must be adopted instead. In that case, the indicator kriging proves to be an efficient method (Journel,
1983), which provides an estimate of the distribution function at any spatial location.

The indicator approach is based on the interpretation of the distribution function as the expec-
tation of an indicator random variable, namely:

P (Z(s) ≤ x) = Fs(x) = E [I(s, x)]

with I(s, x) = 1 if Z(s) ≤ x and zero otherwise. In practice, the distribution is approximated at Q
previously fixed thresholds xq and the remaining values are obtained by interpolation.

As mentioned in Goovaerts (1997), the least-squares (kriging) estimator of the indicator function
is also the least-squares estimator of its expectation, according to the projection theorem. Then, an
approximation of the distribution function at location s and threshold x is given by the indicator
kriging predictor of I(s, x), expressed as:

Î(s, x) =
n∑

i=1

λiI(si, x)

where {λi : 1 ≤ i ≤ n}, are obtained as the solution of the corresponding kriging equations. The latter
implies that a variogram (or covariance function), which is known as indicator variogram (or indicator
covariance function), needs to be inferred for each threshold. This work deals with this issue, which
is called indicator structural analysis.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS101) p.1514



To develop this theory, we will assume that the random process is strictly stationary, so that
Fs(x) = Fs′(x) = F (x), for all x ∈ IR and all s, s′ ∈ D. Then, the indicator variogram is defined as:

2γI(t, x) = Var [I(s, x)− I(s + t, x)] = E
[
(I(s, x)− I(s + t, x))2

]
for each t ∈ IRd and x ∈ IR.

In this setting, an estimator of the indicator variogram is given by the experimental variogram,
derived from the method of moments (Matheron, 1963):

2γ̂I(t, x) =
1

N(t)

∑
(i,j)∈N(t)

(I(si, x)− I(sj , x))2(1)

where N(t) denotes the set of distinct pairs (i, j) satisfying that si − sj = t.
When data are irregularly spaced, the empirical estimator of the indicator variogram can be

smoothed by considering instead a tolerance region T (t) around t. The indicator kriging also demands
the use of a valid variogram estimator, so that it fulfills the conditionally negative-definiteness property.
We can proceed by first choosing a parametric family and then selecting that semivariogram in the
family considered which best fit the data.

In the current work, we suggest a nonparametric alternative to the empirical variogram, which
is similar to that analyzed in Garcia-Soidán (2007) and is adapted to the indicator setting:

2γ̂I,h(t, x) =

∑
i6=j K

(
t−(si−sj)

h

)
(I(si, x)− I(sj , x))2∑

i6=j K
(

t−(si−sj)
h

)(2)

where K represents a d-dimensional kernel function and h is the bandwidth parameter.
The above estimator considers a tolerance region around t, whose amplitude depends on h, and

has the advantage that the more weight is given to each of the pairs considered, the closer to t is
the lag between the locations involved. In consequence, the kernel indicator variogram provides a
smoother estimator, whose consistency will be derived under several assumptions.

In addition, a direct estimation of the distribution function can be obtained through that of
the sill of the indicator variogram, as proposed in Journel (1983). In this respect, the sill S(x) of the
indicator variogram is linked to the distribution function as follows:

S(x) = lim
‖t‖→∞

γI,h(t, x) = F (x)− F (x)2

Then, approximation of the sill of the kernel indicator variogram provides another option for estimation
of the distribution function.

2. Main results

2.1. Check consistency of (2)

Let {Z(s) : s ∈ D ⊂ IRd} be a spatial random process and denote by Z(s1), ..., Z(sn), the n
data collected at the spatial locations s1, ..., sn.

We will assume that the random process is strictly stationary, namely:

(H1) Fs1,...,sj (x1, ..., xj) = Fs1+d,...,sj+d (x1, ..., xj), for all d ∈ IRd and j ≥ 1, with Fs1,...,sj (x1, ..., xj) =
P (Z (s1) ≤ x1, ..., Z (sj) ≤ xj)

In particular, we will write F for the univariate distribution function, namely, Fs = F , for all s ∈ IRd.
In addition, we will ask:
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(H2) For all j ≤ 4 and (s1, ..., sj) ∈ Dj , Fs1,...,sj (x1, ..., xj) admits two continuous derivatives in a
neighborhood of (s1, ..., sj), as a function of (s1, ..., sj).

(H3) For all (s1, s2) ∈ D2, Fs1,s2 (x1, x2) admits three continuous derivatives in a neighborhood of
(s1, s2), as a function of (s1, s2).

The observation region D will be considered to be increasing and a random design will be assumed
for the spatial locations, as suggested in Hall et al. (1994) to achieve consistent estimation:

(H4) D = Dn = βD0, for some β = βn diverging to +∞ and some bounded region D0 ⊂ IRd

containing a sphere with positive d-dimensional volume.

(H5) The spatial locations will be taken as si = β ui, for 1 ≤ i ≤ n, where u1, ..., un represents
a realization of a random sample of size n drawn from g0, where g0 is the density function
considered on D0.

(H6) For a given t ∈ IRd, g0 admits three continuous derivatives in a neighborhood of t.

(H7)
{
h+ (nh)−1 + β−1 + n−2βdh−d

}
n→∞−→ 0.

A dependence condition will be required from the random process, similar to that imposed in Zhu and
Lahiri (2007) to establish a central limit theorem for the empirical process of a random field.

(H8) α(k, b) ≤ c1k−c2bc3 , for some positive real numbers c1, c2, c3.

(H9) K is a d-variate, compactly supported, symmetric and bounded density function, with K(0) > 0.

Under assumptions (H1)-(H9), estimator γ̂I,h(t, x) in (2) satisfies several properties, such as
asymptotically unbiasedness and consistency, for all t ∈ IRd and x ∈ IR. More specifically, we can
check that:

Bias [2γ̂I,h(t, x)] = h2
∑
k,l

∂2γI(t, x)
∂t(k)∂t(l)

∫
z(k)z(l)K(z)dz + o

(
h2
)

Var [2γ̂I,h(t, x)] = 2n−2βdh−dγI(t, x)
(∫

g0 (u)2 du
)−1 ∫

K(z)2dz+

+β−d
(∫

g0 (u)2 du
)−2 ∫

g0 (u)4 du
∫

E
[(

(I(0, x)− I(t, x))2 − 2γI(t, x)
)
·

·
(
(I(v, x)− I(t + v, x))2 − 2γI(t, x)

)]
dv + o

(
n−2βdh−d + β−d

)
for all t ∈ IRd and x ∈ IR.

In consequence, the MSE and the MISE of the kernel indicator variogram tend to zero as the
sample size increases, so that minimization of the above quantities can provide asymptotically optimal
bandwidth parameters. An alternative for selection of h may be that of considering a balloon estima-
tor, namely, a kernel estimator where the bandwidth is allowed to vary with the lag t, as developed in
Terrell and Scott (1992) for density estimation. For instance, we could take h = hk(t) as the euclidean
distance from t to the k-nearest distances between locations in the sample.

2.2. Approximation of F(x)

The kernel indicator variogram can be used for approximation of the distribution function, either
directly, as an application of the proposal given in Journel (1983), from now on denoted as the “Sill
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Approach”, or in an indirect way, by applying the “Kriging Approach”. To proceed with the latter
alternative, estimation of the distribution function F is typically discretized at a number of thresholds,
previously fixed. Then, suppose that we select Q thresholds xq. For each of them, the kernel indicator
variogram 2γ̂I,h(., xq) must be obtained and used to solve the kriging equations, which provide Q
values of the distribution function F. The remainder values can be approximated by interpolation.

The kernel indicator variogram can also be used for direct estimation of the distribution function.
For this purpose, denote by S(x) the sill of the kernel indicator variogram. Then, S(x) = γ̂I,h(∞, x) =
F (x)−F (x)2. Now, take into account that S(x) is increasing in (−∞, xM ] and decreasing in [xM ,∞)
and takes values in [0, 0.25], where xM stands for the median of the distribution F (Journel, 1983).
In view of the latter, we can proceed as follows:

• Approximate the sill at each threshold, Ŝ(xq).

• Determine the value of the median, x̂M , by selecting the value xq for which Ŝ(xq) is maximum
and close to 0.25, so that F (x̂M ) ≈ 0.5.

• For each xq, we can take F (xq) ≈ 0.5 (1 + ε (xq))
√

1− 4Ŝ (xq), with ε(x) = sign (x− x̂M ).

3. Simulation study

In order to analyse the performance of the proposed indicator semivariogram estimator, sim-
ulations of spatial data in IR2 were carried out. Gaussian data were generated on the unit square
D ⊂ IR2, by selecting a theoretical variogram model to specify the spatial dependency. The new
estimator given in (2) is compared against the estimator derived from the method of moments in
(1). The symmetric Epanechnikov kernel was employed in the proposed kernel-type estimator. We
considered a sample size n = 50 and two theoretical variograms, the exponential and the spherical,
with a sill of σ2 = 1.52, the corresponding range equal to φ = 0.3 and no nugget effect τ2 = 0.

For a large number of datasets generated from a Gaussian spatial process, the main aims of the
simulation study can be summarized as follows:

1. Compare two empirical γ̂I(t, x) (Matheron and Kernel) with theoretical γI(t, x) where

γI(t, x) = P [Z(s) ≤ x]− P [Z(s) ≤ x ∩ Z(s+ t) ≤ x] = F (x)− Ft(x, x);

2. Compare two valid γ̃I(t, x) (obtained from empirical γ̂I) with theoretical γI(t, x);

3. Follow “Kriging Approach” and compare theoretical F (x) with F̂ (x) = Î(s, x) =
∑n

i=1 λiI(si, x)
where λi are kriging weights;

4. Follow ‘Sill Approach” and compare theoretical F (x) with F̂ (x) = 0.5(1 + ε̂(x)
√

1− 4Ŝ(x) )
where sill Ŝ(x) obtained from empirical γ̂I

Table 1 summarizes the results obtained when comparing the two empirical estimators (1) and
(2). These results confirm that the proposed estimator offers a better approximation to the theoretical
curve than the classic estimator obtained from the method of moments. This performance difference
is quite evident, about 2.5 times, for the spherical model.

Table 2 summarizes the results of our second numerical study. When fitting a parametric model,
two situations were considered, one assuming knowledge of the theoretical model used in simulation
(referred to as Valid LS1) and the other assuming misspecification (referred to as Valid LS2). In the
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Theoretical model Variogram estimator
ISE values

Mean (St. dev.)

Exponential
Matheron

Kernel
3.93 (2.46)
2.66 (2.57)

Spherical
Matheron

Kernel
2.45 (1.00)
0.98 (0.83)

Table 1: ISE values obtained for the Matheron and the kernel estimators, given in (1) and (2),
respectively. All values were multiplied by 103.

latter case, if data are simulated with the spherical variogram, then the fitted model is the exponential
one, and vice-versa.

The results of Table 2 show that, if the theoretical model is known, the best approach is to
adopt the proposed kernel estimator and then fit this to the known parametric model through OLS.
Otherwise, fitting should follow the method proposed by Shapiro and Botha (1991) (referred to as
Valid SB), after also adopting the kernel estimator. With respect to the standard deviations of ISE,
the lower values are always associated to the Shapiro and Botha method.

Theoretical Variogram ISE values

model estimator
Valid LS1

Mean (St. dev.)
Valid LS2

Mean (St. dev.)
Valid SB

Mean (St. dev.)

Exponential
Matheron

Kernel
2.34 (2.77)
2.22 (2.69)

2.73 (4.44)
2.60 (4.39)

2.88 (2.71)
2.43 (2.59)

Spherical
Matheron

Kernel
0.72 (0.90)
0.64 (0.85)

1.48 (1.65)
1.32 (1.11)

0.92 (0.58)
0.64 (0.50)

Table 2: ISE values obtained for the valid versions of the Matheron and the kernel estimators, given
in (1) and (2), respectively. All values were multiplied by 103.

The following simulation study was planned to approximate the distribution function Fs(x),
with s = (0.5, 0.5), by applying the two approaches described in Section 2.2., which were referred to
as the “Kriging Approach” or the “Sill Approach”.

As in the previous simulations studies, we here have compared both proposals under two sce-
narios, when adopting the proposed kernel estimator (2) and when adopting the Matheron estimator
(1). Three thresholds were selected, so that Q = 3, identifying the quartiles 25%, 50% and 75% as
being representative of the distribution domain, which will be respectively denoted by Q1, Q2 and
Q3. Results are summarized in Table 3, through the values of the mean and the standard deviations
derived for the MSE.

From the first two lines of Table 3, we observe that the MSE values obtained for approximating
F (x) by sill estimation are also smaller under the option of kernel-type estimation. Furthermore,
these same results can compete with the values of MSE associated to the indicator kriging approach
(regardless of the estimator option), with the great advantage of avoiding to solve the kriging system.
Consequently, one might conclude that approximation of the sill of the kernel indicator variogram
offers an important mechanism for estimation of the distribution function.
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Distribution Variogram MSE values

approximation estimator
Q1

Mean (St. dev.)
Q2

Mean (St. dev.)
Q3

Mean (St. dev.)

Sill
Matheron

Kernel
0.227 (0.138)
0.196 (0.097)

0.104 (0.111)
0.012 (0.018)

0.091 (0.146)
0.036 (0.048)

IK
Matheron

Kernel
0.096 (0.151)
0.082 (0.115)

0.095 (0.108)
0.097 (0.107)

0.087 (0.150)
0.082 (0.149)

Table 3: MSE values obtained for the two approximations of the distribution function, based on using
the sill estimation and the indicator kriging. These approximations are based on Matheron and kernel
estimators, given in (1) and (2), respectively. Data simulated with the spherical model. Total number
of replicas is 100 and each sample size is 50.

4. Application to environmental data

We now present a practical situation where the issue of interest is to approximate the distribution
function of a spatially distributed measure of groundwater quality, as it provides the probability that
the associated random process Z(s) does not exceed a given threshold.

Our example is related to groundwater quality data collected in Beja district (in the south of
Portugal) in 1998 and 2000. The observation region D ⊂ IR2 forms an approximated 50km2 square
area, as illustrated in the top panels of Figure 1. Measurements of nitrate were taken, as this chemical
element is quite related with the agricultural activity, which is of great importance in this area. On
the other hand, Beja district is part of one of the driest regions of Portugal, thus making the quality
of water a very important issue.

Groundwater quality is regulated by the European Rule 2006/118/CE, concerning protection
against pollution, and by the Portuguese Law no306/2007, related to the human uses. The maximum
admissible value of the nitrate concentration for which the water is classified as potable is 50mgNO3/L.
Aiming to determine the probability that the concentration of this pollutant does not exceed this
critical value, at a certain unsampled location, we have considered the indicator variable I(s, x) with
x =50mgNO3/L and Z(s) measuring the nitrate concentration at location s.

The top panels of Figure 1 show the locations of the monitoring stations for each year. The size of
each bullet is proportional to the indicator value found in each location, so that large bullets identify
values under the threshold 50 mgNO3/L. The bottom panels display the approximations obtained
for the indicator semivariograms based on Matheron and kernel estimators, defined in (1) and (2),
respectively. Paralta and Ribeiro (2003) present kriging maps for the same indicator variables, after
fitting a spherical model to the Matheron’s estimates. Therefore, in our study, we have also followed
these authors’ approach aiming to compare our results with theirs. Furthermore, we have derived
a valid version of our kernel proposal through Shapiro and Botha method avoiding some possible
misspecification.

We now aim to construct pollution risk maps with these data. In particular, we focused on
the estimation of the probability that the nitrate concentration did not exceed the maximum value
admitted for human consumption along the Beja district, namely, F (50). With this aim, we applied
the two approaches, based either on the sill estimation or on the indicator kriging method, by adopting
the proposed kernel estimator.

Figure 2 displays the results obtained over a grid of a total of 500 points, allowing us to iden-
tify the location of high risk areas. Note that higher probabilities of not exceeding the threshold
50mgNO3/L are present in 1998 than in 2000, which is consistent with an overall increment in levels
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Figure 1: Top panels give the sample locations for 1998 and 2000 in Beja data. Bottom panels present
the empirical estimators, given in (1) and (2), and the corresponding valid versions (full lines) for
nitrate concentration data in Beja district. The distance unit is 1km.

of pollution over the two years between both surveys. Furthermore, one should notice that the two
approaches for estimation of F (50) offer similar outputs, although the approximation based on the
indicator kriging approach seems smoother than that based on the sill estimation. This can be ex-
plained because the latter one involves local information.
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