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1 Introduction

In survey sampling, estimating and making inferences on population variances can be challenging
when sampling designs are complicated. Most of the literature limits the investigation to the case
where a random sample is obtained without replacement (For example, Thompson (1997) and Cho
and Cho (2008)). In this paper, we pursue a computational approach to inference for population
variances and, ultimately, variance components with complex survey data.

This computational approach is based on a resampling technique, artificial population boot-
strapping (APB), introduced in Wang and Thompson (2010). The APB procedure departs from
the common application of resampling procedures in survey sampling. It belongs to the category
of bootstrapping without replacement, with unequal probability sampling being used to select the
resamples. In particular, using a set of complex survey data, many artificial populations are built,
and within each of the those populations, resamples are selected by using the same probability sam-
pling design as the original sample. The APB procedure entails not only mimicking the sampling
design, but also creating artificial populations to resemble as closely as possible the population
from which the original sample is selected. As a result, inferences on parameters for the artificial
population using resamples would resemble inferences on parameters from the finite population
using the original sample. Because full information on the artificial populations and the resamples
is available, point and interval estimates of the artificial population parameters are computable.
That is, we can use the empirical inferences on the artificial population to solve inferential issues
for finite population parameters.

Based on this principle, we can estimate the variance of an estimator, for example an estimator
of a total or variance, and estimate percentiles of a point estimator so as to obtain interval estimates.
Wang and Thompson (2010) used the APB procedures to correct the bias of variance components
estimators in a multilevel model. To solve a potential bias problem caused in part by reduced
variability of artificial populations, we have also investigated a “double APB” procedure Wang
and Thompson (2011) for use in interval estimation and when estimating the variance of a sample
variance.

The survey sampling literature on inference for variance components of a multilevel model
includes other methods, for example, the Taylor linearization approach in Pfeffermann et al. (1998)
and Rabe-Hesketh and Skrondal (2006) and a computational approach in Kovacević et al. (2006).
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Note that the computational approach in Kovacević et al. (2006) is based on bootstrapping with
replacement.

In unequal probability sampling designs, both single stage and multistage, the inclusion
probabilities of the units are often informative (see for example Pfeffermann et al. (1998)). When
the aim is analysis this makes it important to consider a conceptual two-phase structure in which
the finite population under study is generated from a superpopulation, the parameters of which are
the objects of inference, and the sample is taken from a probability sampling design. However, in
this paper, we consider for simplicity that finite population quantities such as totals and variances
are to be estimated.

The paper is organized as follows. Section 2 describes the artificial population bootstrap
algorithm for probability sampling; Section 3 implements the APB in estimation of variance of a
Horvitz-Thompson estimator, with some explanation of the justification. Section 4 describes a way
to set confidence intervals for population variances using the APB. Four approaches are proposed in
Section 5 to estimate the variance of sample a variance. Section 6 describes the simulation studies,
and Section 7 presents conclusions.

2 The Artificial Population Bootstrap (APB)

Suppose there is a set U = {1, · · · , N} indexing the finite population, and yi is a real number
associated with the ith population unit. The sample is denoted by s ⊂ U , and is chosen by
a probability sampling design p(s) with fixed size n, using a method which produces specified
inclusion probabilities. Denote by πi the inclusion probability of unit i. Let ki = b1/πic, where bc
signifies the greatest integer less than or equal to its argument. The proposed method, which is
illustrated in Figure 1, follows these steps:

1. For i ∈ s, make ki copies of (yi, πi) to form a partial artificial population, Ua1 .

2. Use Bernoulli sampling to select a sample, Ua2 , so that i from the sample (with (yi, πi)) is
included again in the artificial population with probability ri = (1/πi)− b1/πic.

3. Combine Ua1 and Ua2 to create an artificial population Ua.

4. Within the artificial population Ua, compute inclusion probabilities π∗i proportional to the πi
and summing to m; select R random samples, s∗, using the probability design p(s) with the
new inclusion probabilities and fixed sample size m.

5. Repeat steps 1 to 4 Q times.

Note that the size of the artificial population from Step 3 will not be N in general.
In an artificial population, if the sample unit i occurs ai times, the sample pair (i, j) occurs

aiaj times. The variables ai and aj are independent, conditional on the sample s. Given that
ai = ki + ζi where ζi = 1 with probability ri and ζi = 0 with probability 1− ri, we have Eartai =
ki + ri = wi = 1/πi and V arart(ai) = ri(1 − ri), where Eart and V arart denote moments with
respect to the generation of the artificial population, conditional on the sample s. The first order
inclusion probabilities in the artificial population are πai = mπi/(

∑
i∈s aiπi), and higher order

inclusion probabilities such as πaij are functions of the design and the πai ’s.
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Figure 1: The Artificial Population Bootstrapping Procedure
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3 Estimation of variance of a Horvitz-Thompson estimator

The Horvitz-Thompson estimator estimates a population total Y =
∑N

i=1 yi. It takes the form

ŶHT =
∑
i∈s

yi
πi
.

Its sampling variance is

(1) V arp(ŶHT ) =
1
2

N∑
i

N∑
j

(πiπj − πij)(
yi
πi
− yj
πj

)2,

which has as unbiased estimator

(2) v(ŶHT ) =
1
2

∑
i∈s

∑
j∈s

(πiπj − πij)
πij

(
yi
πi
− yj
πj

)2.

Conditional on the sample s, the expectation of the artificial population total, Ya =
∑

i∈s aiyi, is
ŶHT .

In resamples of size m from the artificial population, the corresponding Horvitz-Thompson
estimators Ŷ ∗HT will be unbiased estimators of Ya. If we took one artificial population and many
resamples, the empirical variance of Ŷ ∗HT would estimate

(3) V arpa(Ŷ ∗HT ) =
1
2

∑
i∈s

∑
j∈s

aiaj(πai π
a
j − πaij)(

yi
πai
− yj
πaj

)2,

which we would like to be close to the unbiased estimator v(ŶHT ).
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Simulation studies not shown here confirm that (3) has typically only a small relative bias as
an estimator of (1) for both systematic pps and Rao-Sampford designs provided the sample size is
not too small and the inclusion probabilities are not informative and highly variable.

Using the with replacement approximation πaij ' (m− 1)πai π
a
j /m, we have

(4) V arpa(Ŷ ∗HT ) ' 1
2

∑
i∈s

∑
j∈s

aiaj
πai π

a
j

m
(
yi
πai
− yj
πaj

)2.

The right hand side of (4) is

(5)
1
2

∑
i∈s

∑
j∈s

aiaj
m2πiπj

m(
∑

i∈s aiπi)2

(
∑

i∈s aiπi)
2

m2
(
yi
πi
− yj
πj

)2,

and Eart of (5) is approximately equal to (n − 1)v(ŶHT )/m. Thus if we take m = n − 1, the
empirical variance of Ŷ ∗HT will be an approximately unbiased estimator of V arp(ŶHT ), although
there may be a small bias associated with the particular artificial population generated.

If we take many artificial populations with many resamples of size m each, the average (over
the artificial populations) of the empirical variance of Ŷ ∗HT over the number of resamples within an
artificial population will estimate V arp(ŶHT ) better.

Under regularity conditions benefits of using the APB for estimating the variance of a Horvitz-
Thompson estimator will extend to estimating variances of estimators which are solutions of sample
estimating equations and estimating equation systems – one such case being an inflation estimator
of a population variance.

4 Estimation of confidence intervals for S2

With the APB algorithm, we have the variance of y in the artificial population and the resample
inflation estimator of this quantity, as follows:

(6) S2
a =

1
Na − 1

Na∑
i=1

(yi − Ȳa)2,

and

(7) s2∗ =
∑
i∈s∗

wai (yi − ȳs∗)2/
∑
i∈s∗

wai ,

where ȳs∗ =
∑

i∈s∗ w
a
i yi/

∑
i∈s∗ w

a
i is the resample mean of y.

If s2
π/S

2
y ∼ G(ξ) then a two-sided (1− α)% confidence interval is expressed as

(8)
s2
π

ξ1−α/2
≤ S2

y ≤
s2
π

ξα/2

where ξ1−α/2 and ξα/2 are the (1 − α/2)th and (α/2)th quantiles of G. To estimate the interval,
conditional on the sample, we assume that EartGa(ξ), where Ga(ξ) is the distribution (conditional
on the sample and artificial population) of s2∗/S2

a, resembles G(ξ). Hence, if ξ̂1−α/2 and ξ̂α/2 are
the (1 − α/2)th and (α/2)th quantiles of this distribution, the interval s2

π/ξ̂1−α/2 ≤ S2
y ≤ s2

π/ξ̂
α/2

may be close to the confidence interval in (8). To estimate the βth percentile, ξ̂β, we follow the
following procedures.
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1. From the original sample, generate Q artificial populations and R resamples within each
artificial population;

2. In the qth artificial population, compute the artificial population variance, S2
aq, and resample

variance estimates, s2∗
q1, · · · , s2∗

qR, using (6) and (7); order the ratios, s2∗
q1/S

2
aq, · · · , s2∗

qR/S
2
aq to

get the empirical percentiles ξ̂qβ for the qth artificial population;

3. Repeat step 2 for all the artificial populations to provide ξ̂1
β, · · · , ξ̂

Q
β ; the average of the

empirical percentiles could be taken as the estimate ξ̂β of the βth percentile ξβ. That is,

ξ̂β =
1
Q

Q∑
q=1

ξ̂qβ.

Using ξ̂α/2 and ξ̂1−α/2, we have the estimated confidence interval for S2
y as

s2
π/ξ̂1−α/2 ≤ S2

y ≤ s2
π/ξ̂α/2.

5 Estimating the variance of a bias-corrected variance estimator

There are several resampling approaches to this problem, involving either the APB as already
described, or a double APB bootstrap. In the double APB resampling procedure, as illustrated in
Figure 2, the same APB procedures as described in Figure 1 are repeated in two generations. For
q = 1, · · · , Q, for q∗ = 1, · · · , Q∗, for r = 1, · · · , R and for r∗ = 1, · · · , R∗:

1. Create artificial populations, Ua1 , · · · , UaQ, from the original sample and within the qth popu-
lation, construct R resamples, s∗q1, · · · , s∗qR.

2. In the qth artificial population, for the rth resample, s∗qr, create artificial populations Ua∗qr1, · · · , Ua∗qrQ∗

and within the q∗th artificial population, construct R∗ resamples, s∗∗qrq∗1, · · · , s∗∗qrq∗R∗ .

We have

S2
y =

1
N − 1

[
N∑
i=1

y2
i −

(
∑N

i=1 yi)
2

N

]
=

1
2N(N − 1)

N∑
i

N∑
j

(yi − yj)2.

The inflation estimator of variance s2
π can also be written as

s2
1 =

∑
i∈s

y2i
πi∑

i∈s
1
πi

−
(
∑

i∈s
yi

πi
)2

(
∑

i∈s
1
πi

)2
.

An unbiased estimator is

s2
2 =

1
2N(N − 1)

∑
i∈s

∑
j∈s

(yi − yj)2

πij
.
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Figure 2: The Double Resampling Procedure
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It is possible to show that s2
1 ' (n−1)s2

2/n under the with replacement approximation, consistently
with the bias correction factor for s2

1 used in Wang and Thompson (2010) being approximately
n/(n− 1). For

s2
1 =

1
2(
∑

i∈s
1
πi

)2

∑
i∈s

∑
j∈s

1
πi

1
πj

(yi − yj)2,

and
∑

i∈s 1/πi is an unbiased estimator of N , while πij ' n−1
n πiπj .

5.1 Linearization of inflation estimator

In the linearization approach, we note that

s2
1 =

T̂3

T̂1

− T̂ 2
2

T̂ 2
1

,

estimating
T3

T1
− T 2

2

T 2
1

=
1
N

(
N∑
i=1

y2
i −

(
∑N

i=1 yi)
2

N

)
=
N − 1
N

S2
y .

Then

s2
1 −

(N − 1)
N

S2
y '

1
T1

[
(T̂3 − T3)− 2Ȳ (T̂2 − T2)− T3

T1
(T̂1 − T1) + 2Ȳ 2(T̂1 − T1)

]
,
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and
V ar(s2

1) ' 1
T 2

1

V ar(
∑
i∈s

wizi) =
1
N2

V ar(
∑
i∈s

wizi)

where

zi = y2
i − 2Ȳ yi −

1
N

N∑
k=1

y2
k + 2Ȳ 2 = (yi − Ȳ )2 − N − 1

N
S2
y .

This variance could be estimated analytically if Ȳ and S2
y were known; in the estimator so formed,

estimates of these population quantities could be substituted. Alternatively, we could construct an
artificial population and resample from it many times, and calculate the bootstrap variance as the
value for the artificial population of the empirical variance of

1
Na

∑
i∈s∗

wai z
a
i

where wai = 1/πai and zai = (yi − Ȳa)2 − Na−1
Na

S2
y,art. It is expected that a bias correction might

be required, using double resampling. This estimator without the bias correction is denoted by
vplin(s2) in Section 6.3.

5.2 Modified linearization of inflation estimator

From the new form of s2
1 above, we have

s2
1 =

1
2

∑
i∈s

∑
j∈s

wiwj(yi − yj)2/
∑
i∈s

∑
j∈s

wiwj .

Define S2
π by

Es2
1 '

1
2

N∑
i

N∑
j

πij
πiπj

(yi − yj)2/
N∑
i

N∑
j

πij
πiπj

= S2
π.

Then
s2

1 − Es2
1 '

1
2
∑

i∈s
∑

j∈swiwj
[
∑
i∈s

∑
j∈s

wiwj{(yi − yj)2 − S2
π}].

We can estimate the variance of s2
1 as (

∑
i∈swi)

−4 times an estimate of the variance of

1
2

∑
i∈s

∑
j∈s

wiwj{(yi − yj)2 − S2
π}.

An analytic expression for an unbiased estimator of this variance would use joint inclusion proba-
bilities up to fourth order. Alternatively, we could estimate the second part (numerator) using an
APB. This would require that the empirical variance of the statistic in the artificial population be
close to an unbiased estimator of its variance in the original population.
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5.3 Estimating moments of unbiased estimator

Alternatively, we could work with the unbiased estimator s2
2.

Es2
2 =

1
2N(N − 1)

N∑
i

N∑
j

(yi − yj)2.

V arp(s2
2) =

1
4N2(N − 1)2

N∑
i

N∑
j

N∑
k

N∑
l

Cij,kl(yi − yj)2(yk − yl)2

where
Cij,kl =

πijkl
πijπkl

− 1.

If uij = (yi − yj)2, so that uii = 0, then

(9) V arp(s2
2) =

1
4N2(N − 1)2

[2
N∑
i,j

Cij,iju
2
ij+

N∑
i 6=

N∑
j 6=

N∑
k 6=

N∑
l

Cij,kluijukl+4
N∑
i

N∑
j

N∑
k

Cij.ikuijuik].

The equation (9) reduces for SRS to

(10) V arp(s2) =
f0

2
·AU +

f1 − 3f0

2
·BU ,

where s2 is the sample variance, f0 = 1/n−1/N , f1 = 1/(n− 1)−1/(N − 1), AU =
∑∑
i 6=j∈U

u2
ij/[N(N−

1)] and BU =
∑∑∑∑
i 6=j 6=k 6=l∈U

uijukl/[N(N − 1)(N − 2)(N − 3)].

The key to proceeding analytically is to note that in (9) or(10) each of the major terms has
an unbiased estimator from the sample. For example, for SRS, we can obtain an unbiased estimator
of V arp(s2) as

(11) vpu(s2) =
f0

2
·As +

f1 − 3f0

2
·Bs.

where As =
∑∑
i 6=j∈s

(yi − yj)4/[n(n− 1)]

and Bs =
∑∑∑∑
i 6=j 6=k 6=l∈s

(yi−yj)2(yk−yl)2/[n(n−1)(n−2)(n−3)]. Exploring an APB approach

in the SRS case, we note that analogous to the original population quantities AU and BU , we have
the following artificial population quantities Aa and Ba, which can be expressed as

Aa =
∑∑
i 6=j∈s

aiaju
2
ij/[N(N − 1)]

and

Ba = {
∑∑∑∑

i 6=j 6=k 6=l∈s
aiajakaluijukl + 2

∑∑
i 6=j∈s

ai(ai − 1)aj(aj − 1)u2
ij

+4
∑∑∑
i 6=6=k∈s

ai(ai − 1)ajakuijuik}/[N(N − 1)(N − 2)(N − 3)].
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If N = nk, then after some algebra we obtain

(12) Eart[Aa] = bAs

where b = (n− 1)N/(N − 1)n and

(13) Eart[Ba] = dAs∗ + cBs∗

where d = 2k(k − 1)2n(n− 1)((n+ 1)k − 2n− 2k + 4)/N (4) and c = k4n(4)/N (4).
Suppose that in a double APB , s∗ is a resample from artificial population U q, and U∗ is s

corresponding artificial population from s∗. We consider the following two regression models:

(14) Eart∗ [Aa∗] = bAs∗

and

(15) Eart∗ [Ba∗] = dAs∗ + cBs∗ .

Using least squares estimation, we can estimate d, b and c using the regression models on (12) and
(13), d̂, b̂ and ĉ, and obtain the following approximately unbiased estimates of V arp(s2):

(16) vpr(s2) =
f0

2
b̂Aa +

f1 − 3f0

2ĉ
(Ba − d̂

b̂
Aa).

More simply, because we have its explicit decomposed expression, we could estimate Vp(s2) using
the double APB as:

(17) vpd(s2) =

[
f0
2 ·Aa + f1−3f0

2 ·Ba
]2

1
R

∑R
r=1(f02 ·Aa∗ + f1−3f0

2 ·Ba∗)r
.

This APB approach is unnecessary with SRS, but it can be generalized with more effort to
the case of pps sampling, where it is necessary to consider a decomposition of the variance into
three parts, as indicated in (9).

5.4 Full resampling approach

In the full resampling approach, we would consider a bias-corrected estimator Cs2
1. From each ar-

tificial population, we would resample, and compute the empirical variance V ârart(Cas∗21 )of Cas∗21 ;
this will estimate V arart(Cas∗21 ), and it will also estimate V arp(Cs2

1) with some multiplicative bias
as expressed by

(18) Ep[Eart(V ârart(Cas∗21 )|s)] = V arp(Cs2
1)/D.

To correct the bias of the empirical variance of Carts∗21 , we might try to estimate D by a double
APB procedure, assuming that

(19) Ep∗ [Eart∗(V ârart∗(Ca∗s∗∗21 )|s∗)] ' V arart(Cas∗21 )/D,

where Ep∗ is the expectation due to the sampling design of resamples selected from the artificial
population, Ua, and Eart∗ denotes expectation over the generation of artificial populations, Ua∗,
from the resample s∗. We denote the resulting “naive” estimator as vpn(s2).
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6 Simulation studies

In the following simulation studies, we examine the performance of the APB procedures in the
estimation of variances. Values used for examining the performance of point estimators are defined
in the corresponding tables. We use the coverage probability to examine the interval estimators of
variance.

6.1 Estimation of variance of Horvitz-Thompson estimator

We consider a finite population of size N where units yi for i = 1 · · · , N are generated from a N(3, 1)
distribution. We examined the performance of estimation of the variance of Horvitz-Thompson
estimators computed from samples selected employing SRS and a probability proportional to size
(pps) sampling design.

We set the population size to N = 500 and various sample sizes. For the pps sampling design,
we selected our samples with the Rao-Sampford method, which provides calculable secondary order
inclusion probabilities. The size variable was also a N(3,1) random variable. Using (2), we computed
v(ŶHT ) from the sample, the average over artificial populations of V arpa(Ŷ ∗HT ) defined in (3), and
v∗(ŶHT ), the average over the artificial populations of the empirical variance of Ŷ ∗HT from resamples
of size m = n−1 using the APB. We simulated I = 1000 samples from the population and for each
sample selected with SRS, we generated R = 50, 100, 500 resamples within the artificial population,
whereas for the pps design, we created Q = 25 and Q = 100 artificial populations with R = 100
resamples within each of the artificial populations. For each sample, we computed the relative
biases with respect to the true variance V ar(ŶHT ) defined in (1).

Results of the simulations appear in Tables 1 and 2. Table 1 suggests that under the SRS
design the empirical variance from the APB procedure works as well as the unbiased estimator of
the variance of the Horvitz-Thompson estimator for various sample sizes. The resampling procedure
does not require a very large number of resamples. As expected, V arpa(Ŷ ∗HT ), calculated assuming
a resample size of n, is biased for small sample sizes, but it improves greatly assuming a resample
size of m = n−1. Table 2 for pps sampling indicates that the empirical variance v∗(ŶHT ) performs
as well as the unbiased estimates of variance ν(ŶHT ) for various sample sizes. Increases in the
number of artificial populations did not reduce the bias appreciably.

6.2 APB for estimating confidence intervals for variance

In this study, a finite population of size N was generated from the following model, Y = β + ε
where ε ∼ N(0, 1). With N = 1000, the finite population parameter S2 is 0.977.

We considered two sampling schemes: an SRS scheme and a pps sampling scheme. The size
variable, Vi, was an exponential function of a normally distributed random variable whose mean
and variance were zero and 1, respectively, and which was truncated to be in the range −1.5 to 1.5.
In a range of sample sizes, n = 10, 20, 40 and 100 population units were sampled with probability
proportional to the size variable, Vi, and hence the inclusion probability πi was nVi/

∑
i Vi for

i = 1, · · · , N . We denote by I the number of samples, by Q the number of artificial populations,
and by R the number of resamples (of size n− 1) from each artificial population.

The results are reported in Tables 3 and 4, where rBias(up) and rBias(low) denote relative
biases for the estimators of the 0.975 and 0.025 percentiles, respectively. Coverage refers to the
coverage percentages of the estimated confidence interval. Note that the relative bias of the sample
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Table 1: Estimation of Variance of HT Estimates for SRS Samples

n values v∗(ŶHT ) v∗(ŶHT ) v∗(ŶHT ) v(ŶHT ) V arpa(ŶHT ) V arpa(ŶHT )
R = 50 R = 100 R = 500 m = n− 1 m = n

rbias 0.0159 0.0180 0.0184 0.0107 0.0147 -0.1861
5 rSD 0.7211 0.7138 0.7098 0.6968 0.6995 0.5693

rMCE 0.0161 0.0160 0.0159 0.0156 0.0156 0.0135
rbias 0.0141 0.0104 0.0096 0.006 0.0101 -0.1138

10 rSD 0.5121 0.4632 0.4595 0.452 0.453 0.4171
rMCE 0.0115 0.0104 0.0103 0.0101 0.0101 0.0095
rbias 0.0116 0.0114 0.0113 0.0084 0.0126 -0.0333

25 rSD 0.3023 0.2959 0.2908 0.2784 0.2795 0.2683
rMCE 0.0068 0.0066 0.0065 0.0062 0.0062 0.0061
rbias 0.0095 0.0080 0.0077 0.0033 0.0075 -0.0148

50 rSD 0.2128 0.2030 0.1976 0.1857 0.1865 0.1851
rMCE 0.0048 0.0045 0.0044 0.0042 0.0042 0.0041
rbias 0.0029 0.0018 0.0012 0.0025 0.0035 -0.0086

100 rSD 0.1896 0.1624 0.1500 0.1266 0.1272 0.1256
rMCE 0.0042 0.0036 0.0034 0.0028 0.0028 0.0028

rbias=
P

(θ̂r/θ − 1)/I, rSD=

qP
(θ̂r − ¯̂

θ)2/(I − 1)/θ, rMCE =

qP
(θ̂r − ¯̂

θ)2/I(I − 1)/θ

estimator ξ̂β is calculated according to (
∑I

j=1(ξ̂βj/ξβ) − 1)/I where ξ̂βj is the estimate of the βth

percentile from the jth simulated sample for j = 1, · · · , I and ξβ is the finite population parameter.
In this case, since we do not know the true value for ξβ, the βth percentile of the distribution of
s2/S2, we use its empirical value. That is, for each sample, we compute s2/S2 and of the I = 1000
simulated values, we find the βth percentile, and use it as our true value of the percentile. Table 3
suggests that for the SRS case, relative biases improve with increasing sample size, but not with an
increase in the number of resamples. Coverage probability improves to some extent. The relative
bias of the estimated upper percentile indicates that it underestimates the true percentile, which is
consistent with the finding of undercoverage by the confidence intervals. Table 4 suggests for the
pps case, relative biases and coverage probability improve with increasing sample size, and with
increasing number of resamples, R, but are insensitive to the number of artificial populations, Q.
A double APB resampling procedure might be implemented to reduce the bias of the upper and
lower limits such as to improve the coverage probability.

6.3 Estimation of variance of sample variance estimator

In this study, a finite population of size N was generated from the following model, Y = β + ε
where ε ∼ N(0, 1). With N = 1000, the finite population parameter S2 is 1.009. We consider two
sampling schemes here. One is a SRS scheme and the other is a pps sampling scheme.

For the SRS scheme, we examined the performance of five different estimators of the variance
of sample variance. Those estimates are vpu(s2) from (11) , vpd(s2) from (17), vpr(s2) from (16),
vpn(s2) from Section 5.4, an inflation estimator vp∗(s2) = f0A

a/2 + (f1 − 3f0)Ba/2, an adjusted
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Table 2: Estimation of Variance of HT Estimates for PPS Samples

n values v∗(ŶHT ) v∗(ŶHT ) ¯V arpa(Ŷ ∗HT ) ¯V arpa(Ŷ ∗HT ) ν(ŶHT )
Q = 25 Q = 100 Q = 25 Q = 100

rbias 0.0235 0.0243 0.0299 0.0299 0.0202
5 rSD 0.8489 0.8467 0.8498 0.8499 0.8434

rMCE 0.0269 0.0269 0.0270 0.0270 0.0268
rbias -0.0120 -0.0149 0.0152 0.0152 0.0130

10 rSD 0.6420 0.6411 0.6504 0.6505 0.6426
rMCE 0.0177 0.0177 0.0179 0.0179 0.0176
rbias -0.0109 -0.0101 0.0350 0.0350 -0.0108

25 rSD 0.3928 0.3928 0.4073 0.4075 0.3951
rMCE 0.0176 0.0176 0.0182 0.0182 0.0177

rbias=
P

(θ̂r/θ − 1)/I, rSD=

qP
(θ̂r − ¯̂

θ)2/(I − 1)/θ, rMCE =

qP
(θ̂r − ¯̂

θ)2/I(I − 1)/θ

Table 3: Performance of Interval and Quantile Estimates for SRS Samples

n Coverage rBias(up) rBias(low) Coverage rBias(up) rBias(low)
R = 100 R = 200

10 90.10 −0.1214 −0.0239 90.65 −0.1118 −0.0535
20 90.25 −0.0728 0.0219 90.70 −0.0409 0.0840
40 92.25 −0.0542 0.0232 91.20 −0.0248 0.0357
100 91.70 −0.0137 0.0152 91.85 −0.0154 0.0229
200 91.95 −0.0036 0.0165 92.95 −0.0073 0.0133
rbias=

P
(θ̂r/θ − 1)/I

estimator vcp∗ = f0A
c
s/2+(f1 − 3f0)Bc

s/2, where Acs and Bc
s are bias-corrected versions with a single

APB of As and Bs respectively, and the linearization estimator v̂plin(s2) as described in Section 5.1.
Using V arp(s2) defined in (10) as the true population parameter, we calculated the relative bias
of each estimate, and the results are reported in Table 5. When the sample size is small (n = 10),
we found that the empirical variance (vp∗(s2)) based on the artificial population was biased by
−29%. Using the double APB estimate, vpd(s2), we can reduce the bias of vp∗(s2) to −5%. The
regression-based estimate, vpr(s2), is exactly unbiased in this SRS case. The estimated variances
(vpn(s2)) obtained directly from the double resampling procedure are found to overestimate the
true values and work well only when the sample size is large. This suggests that when the bias
structure is not “simple”, using the APB on the decomposition of the variance expression will
provide more accurate estimates. The linearization estimator vplin(s2) has larger relative biases
for all sample sizes. The same design as in section 6.2 was used to generate the pps sample. For
Q = 25 and R = 25, we computed the estimated variance of s2

1 = s2
π using the naive double

resampling procedures described in section 5.4. Results (not shown here) are not very promising.
A decomposition approach will be investigated along with the APB procedures.
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Table 4: Performance of Interval and Quantile Estimates for PPS Samples

n = 20 n = 40 n = 100
(Q,R) Coverage RBias RBias Coverage RBias RBias Coverage RBias RBias

(up) (low) (up) (low) (up) (low)
(50,50) 79.5 −0.225 0.208 83.6 −0.169 0.122 86.5 −0.076 0.045
(100,50) 79.6 −0.225 0.208 83.4 −0.169 0.121 86.9 −0.076 0.045
(50,100) 80.5 −0.219 0.187 84.0 −0.165 0.109 87.4 −0.072 0.039
(100,100) 80.8 −0.219 0.187 84.2 −0.165 0.109 87.3 −0.072 0.039

rbias=
P

(θ̂r/θ − 1)/I

Table 5: Performance of Estimation of Variance of Sample Variance for SRS Samples

n values vpu(s2) vp∗(s2) vcp∗ vpd(s2) vpr(s2) vplin(s2) vpn(s2)
rbias -0.0330 -0.2856 -0.0295 -0.0488 0.0162 -0.3093 0.1939

10 SD 0.3310 0.2211 0.3339 0.3217 0.3523 0.2288 0.2959
MCE 0.0134 0.0120 0.0134 0.0133 0.0136 0.0118 0.0094
rbias -0.0261 -0.1659 -0.0227 -0.0274 -0.0167 -0.1675 0.0425

20 SD 0.1010 0.0827 0.1026 0.1020 0.1022 0.0856 0.0825
MCE 0.0099 0.0093 0.0100 0.0099 0.0100 0.0093 0.0076
rbias 0.0152 -0.0596 0.0173 0.0162 0.0173 -0.0621 0.0360

40 SD 0.0354 0.0322 0.0358 0.0357 0.0355 0.0337 0.0294
MCE 0.0072 0.0070 0.0072 0.0072 0.0072 0.0070 0.0060
rbias -0.0026 -0.0308 -0.0008 -0.0007 -0.0023 -0.0265 0.0424

100 SD 0.0080 0.0077 0.0081 0.0081 0.0080 0.0084 0.0078
MCE 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0020

rbias=
P

(θ̂r/θ − 1)/I, SD=

qP
(θ̂r − ¯̂

θ)2/(I − 1)/θ, MCE =

qP
(θ̂r − ¯̂

θ)2/I(I − 1)/θ

7 Conclusions

We used APB procedures to estimate and make inferences about population variances. Because
analytic expressions for variance are often more complex to calculate than the design is to imple-
ment, using an APB algorithm to estimate variances has some practical value. Simulation studies
show that APB performs well for an SRS design. It is speculated that the APB procedure along
with decomposition of the theoretical variance will outperform other resampling-based estimates of
variance of the sample variance, since the results for SRS are exact. Further work is needed to ap-
ply decomposition-assisted APB procedures to the pps sampling design because the “naive” double
APB procedure does not perform well with small sample sizes. A double resampling procedure is
suggested for interval estimation for complex designs.
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Kovacević, M., R. Huang, and Y. You (2006). Bootstrapping for variance estimation in multi-level models
fitted to survey data. In 2006 Joint Statistical Meetings-Section on Survey Research Methods.

Pfeffermann, D., C. J. Skinner, D. J. Holmes, H. Goldstein, and J. Rasbash (1998). Weighting for unequal
selection probabilities in multilevel models. Journal of Royal Statistical Society, Series B 60, 23–40.

Rabe-Hesketh, S. and A. Skrondal (2006). Multilevel modelling of complex survey data. Journal of Royal
Statistical Society, Series A 169, 805–827.

Thompson, M. E. (1997). Theory of Sample Surveys (first ed.). Chapman and Hall.

Wang, Z. and M. E. Thompson (2010). A resampling approach to estimate variance components of multilevel
models. Working Paper.

Wang, Z. and M. E. Thompson (2011). Empirical inference on variance components. Working Paper.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS056) p.1035


