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Abstract

Functional statistics aims to provide relevant tools to deal with samples of curves (or more gener-

ally infinite dimensional variables). This field of modern statistics presents theoretical challenges and

opens a wide scope of potential real world applications. Various well known multivariate models and

methods have been extended to take into account the infinite dimension of the variables. A lot of

consideration has been given to the study of the regression of a real-valued response on a functional

variable. Many estimation procedures, often based on structural assumptions on the regression oper-

ator, have been considered. This work concerns an other type of issue: the construction of structural

testing procedures in such regression models. Structural tests may be relevant by themselves to check

the validity of some a priori model or some theoretical assumptions. They are also relevant com-

plementary tools to estimation methods to check the validity of some structural assumptions used to

construct the estimator or test if some heuristic hypothesis coming from an estimation of the regression

operator holds. However, the literature devoted to such tests is reduced to a small number of papers.

A theoretical background has been recently proposed to consider a wide scope of structural tests. The

aim of this talk is to describe the practical use of some of these tests, discuss some recent improve-

ments and talk about interesting prospects. The test statistic is computed from an estimator specific

to the null (structural) hypothesis and uses recent advances in kernel smoothing for functional data.

Then, several bootstrap methods are proposed to compute the threshold value. Simulation studies

and applications are finally presented to illustrate the interest of the proposed testing procedures.
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1. Introduction

A great variety of real world issues involve functional phenomena which may be represented as curves

or more complex objects. They may for instance come from the observation of phenomenon over

time or more generally its evolution when the context of the study changes (e.g. growth curves, sound

records, spectrometric curves, electrocardiograms, images). It is nowadays common to deal with a large

amount of discretized observations of a given functional phenomenon that actually gives a relevant
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understanding its dynamic and regularity. Classical multivariate statistical tools may be irrelevant in

that context to take benefit from the underlying functional structure of these observations.

Recent advances in functional statistics offer a large panel of alternative methods to deal with func-

tional variables (i.e. variables taking values in an infinite dimensional space) which become popular in

real world studies. A general overview on functional statistics may be fond in Ramsay and Silverman

(1997, 2002, 2005), Bosq (2000), Ferraty and Vieu (2006), and more recently Ferraty and Romain

(2010). This talk focuses on the study of regression models involving a functional covariate:

Y = r(X ) + ε,

where Y is a real valued random variable, X is a random variable taking values in a semi-metric space

(E , d) and E[ε|X ] = 0.

A lot of work has already been done on the estimation of the regression operator r through various

versions of this model corresponding to structural assumptions on r. The most famous example is

certainly the functional linear model introduced by Ramsay and Dalzell (1991):

Y = α0+ < α,X >L2([0;1]) +ε, (α0, α) ∈ R× L2([0; 1]).

This model has received a lot of attention and is still a topical issue what is illustrated through the

contributions of Cardot et al. (1999,2000,2007), Ramsay and Silverman (1997, 2005), Preda and

Saporta (2005), Hall and Cai (2006), Crambes et al. (2009), or Ferraty and Romain (2010, Chapter

2) among others.

Several other examples of models based on a given structure of r have been considered as appears in

the work of Sood et al. (2009) on a multivariate additive model based on the first coefficients of a

functional P.C.A., Ait Saidi et al. (2008) about the functional single index model, or Aneiros-Perez

and Vieu (2009) on the partial linear model. And it is likely other “structural modelisations” will be

considered in the future (functional additive models, partially functional models, ...).

On the other hand, nonparametric models in which only the regularity (Hölder) of r with respect to

the semi-metric d is assumed, have been considered by Ferraty and Vieu (2000). Many references on

recent contributions on this topic are given in Ferraty et al. (2002), Masry (2005), Ferraty and Vieu

(2006), Delsol (2007,2009) together with Ferraty and Romain (2011, Chapters 1, 4, and 5).

2. Structural tests

2.1 A general way to construct a test statistic

As discussed in the previous paragraph, a lot of work as been done on the estimation of the regression

operator r. This work focuses on a different issue and proposes statistical tools for the construction of

testing procedures allowing to check if r has a given structure (e.g. constant, linear, multivariate, . . . ).

Such testing procedures are interesting by themselves to test the validity of an a priori assumption on

the structure of the regression model. They are also complementary tools to estimation methods. They

may be used as a preliminary step to check the validity of the structural assumption used to construct

an estimator and may be relevant to test some structural assumption made from the estimation of

r. To the best of our knowledge, the literature on this kind of problem is restricted to Cardot et

al. (2003,2004), Müller and Stadtmüller (2005) in the specific case of a linear model, Gadiaga and

Ignaccolo (2005) on no effect tests based on projection methods, and Chiou and Müller (2007) on an

heuristic goodness of fit test. Hence it seems no general theoretical background has been proposed to

test the validity of the different modelizations discussed in the introduction part. In the remainder of

this note R stand for a family of square integrable operators and w a weight function. Our aim is to
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present and discuss in this work a general methodology allowing to test the null hypothesis:

H0 : {∃r0 ∈ R, P (r(X ) = r0(X )) = 1}

under local alternatives of the form

H1,n : { inf
r0∈R

‖rn − r0‖L2(wdPX ) ≥ ηn}.

Extending the ideas of Härdle and Mammen (1993), we construct our test statistic from an estimator

r̂ adapted to the structural model (corresponding to the null hypothesis, i.e. induced by R) we want

to test and functional kernel smoothing tools (K denotes the kernel):

Tn =

∫
(

n∑
i=1

(Yi − r̂(Xi))K

(
d(Xi, x)

hn

)
)2w(x)dPX (x).

For technical reasons, we assume the estimator r̂ is constructed on a sample D1 independent from

D = (X , Yi)1≤i≤n. A theoretical result in Delsol et al. (2011) states under general assumptions the

asymptotic normality of Tn under the null hypothesis and its divergence under the local alternatives.

This result opens a large scope of potential applications of this kind of test statistic. Here are few

examples:

• test of an a priori model: R = {r0}, r̂ = r0.

• no effect test: R = {r : ∃C ∈ R, r ≡ C}, r̂ = Y n.

• test of a multivariate effect: R = {r : r = g ◦ V, V : E → Rp known, g : Rp → R}, r̂ multivariate

kernel estimator constructed from (Yi, V (Xi))1≤i≤n.

• linearity test: R = {r : r = α0+ < α, . >, (α0, α) ∈ R × L2[0; 1]}, r̂ functional spline estimator

(see Crambes et al. 2009).

• test of a functional single index model: R = {r : r = g(< α, . >), α ∈ E , g : R → R}, r̂ estimator

proposed in Ait Saidi et al. (2008).

Other situations may also be considered whenever it is possible to provide an estimator r̂ satisfying

some conditions.

2.2 Bootstrap methods to get the threshold

The practical use of our test statistic requires the computation of the threshold value. One could

propose to get it from the asymptotic distribution. However, the estimation of dominant bias and

variance terms is not easy, that is why we prefer to use bootstrap procedures. The main idea is to

generate, from the original sample, B samples for which the null hypothesis approximately holds.

Then, compute on each of these samples the tests statistic and take as threshold the 1− α empirical

quantile of the values we have obtained.

We propose the following bootstrap procedure in which steps 2-4 are made separately on samples

D : (Xi, Yi)1≤i≤n and D1 : (Xi, Yi)n+1≤i≤N . In the following lines r̂K stands for the functional kernel

estimator of the regression operator r computed from the whole dataset.

Bootstrap procedure:

Pre-treatment:

1. ε̂i = Yi − r̂K (Xi)

2. ε̃i = ε̂i − ¯̂ε

Repeat B times steps 3-5:
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3. Generate residuals (3 different methods NB, SNB or WB)

•NB (εbi)1≤i≤n drawn with replacement from (ε̃i)1≤i≤n

•SNB (εbi)1≤i≤n generated from a ”smoothed” version F̃n of the empirical cumulative distribution

function of (ε̃i)1≤i≤n (εbi = F̃−1
n (Ui) , Ui ∼ U (0, 1))

•WB (εbi) = ε̃iVi where Vi ∼ PW fulfills some moment assumptions: E [Vi] = 0, E
[
V 2
i

]
= 1 et

E
[
V 3
i

]
= 1.

4. Generate bootstrap responses “corresponding” to H0

Y b
i = r̂ (Xi) + εbi

5. Compute the test statistic T b
n from the bootstrap sample (Xi, Y

b
i )1≤i≤N

Compute the threshold value

6. For a test of level α, take as threshold the 1− α quantile of the sample (T b
n)1≤b≤B.

Three examples of distributions PW given in Mammen (1993) are considered. The different methods

used to generate bootstrap residuals globally lead to similar results but some of them perform slightly

better in terms of level or power. From the results obtained in simulation studies, it seems relevant to

use wild bootstrap methods (WB) which lead to more powerful tests and are by nature more robust

to the heteroscedasticity of the residuals.

Finally, the integral with respect to PX which appears in Tn’s definition may be approximated by

Monte Carlo on a third subsample D2 independent from D and D1.

3. Discussion and recent advances

Let us first discuss shortly the impact of the semi-metric d in our testing procedures. Assume d actually

take into account only some characteristics (e.g. derivatives, projections, ...) X̃ of the explanatory

curve X . Because of its definition the test statistic Tn only depends on these characteristics. Hence

the null and alternative hypothesis considered are actually made on the regression model

Y = rd(X̃ ) + εd,

with E[εd|X̃ ] = 0. Consequently, the use of a semi-metric based on first functional PCA scores will

only be able to test assumptions on the regression model corresponding to these first scores and when

a semi-metric based on derivatives is used structural assumptions concern the effect of the derivatives.

The general method described above is a first attempt in the construction of general structural testing

procedures in regression on functional variable (see Delsol, 2008, and Delsol et al., 2011 for a more

detailed discussion). The use of these tests on spectrometric data provide relevant informations on

the structure of the link between the spectrometric curve and the chemical content of a product. Such

tools may be also useful in procedures that aim to extract informative features from the explanatory

curve. However it seems relevant to try to improve our approach and propose other test statistics that

does not require to split our sample into three subsamples what may cause troubles in practice. To

this end, we are now considering the following test statistic:

T2,n =
∑
i 6=j

(Yi − r̂(Xi))(Yj − r̂(Xj))K

(
d(Xi,Xj)

hn

)
w(Xi)w(Xj)

The theoretical study of this new test statistic is in progress. However, in the case of no effect tests,

it seems T2,n have the same kind of asymptotic properties than Tn. Moreover, the new statistic T2,n
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Table 1: Empirical rejection probabilities with the third wild bootstrap method, h = 4 and B = 100

Model Y 1 and T2 Y 3 and T2 Y 6 and T2

Empirical rejection probability for α = 0.05 0.0555 0.9961 1

Empirical rejection probability for α = 0.01 0.0141 0.9515 1

Empirical rejection probability for α = 0, 1 0.1062 0.9986 1

Model Y 1 and T Y 3 and T Y 6 and T

Empirical rejection probability for α = 0.05 0.0486 0.5765 0.9894

Empirical rejection probability for α = 0.01 0.0085 0.2427 0.8438

Empirical rejection probability for α = 0.1 0.1002 0.763 0.9987

seems more powerful (from simulations made with the same value of n = 100).

No effect tests statistics based on Tn and T2,n have been compared on three regression models

Y k = 5(k − 1)exp(−
∫ 1

0
X(t)cos(7.5t)dt) + ε.

For each model, 10000 samples of 300 pairs (Xi, Y
k
i ) have been considered. Each curve is simulated in

a nonparametric way from the simulation of a brownian motion with the same approach as in Delsol

(2008). The 300 pairs are splitted into three samples of size 100. Then, to make our comparison as

fair as possible, Tn is computed from the three sub-samples while T2,n is computed on one sample of

size 100 in such a way for both tests n = 100.

The first regression model (X,Y 1) corresponds to the null hypothesis, while (X,Y 3) and (X,Y 6) cor-

respond to alternatives. The empirical levels of our tests (see column 2) are comparable and close to

the nominal levels. However, T2,n seems to be more powerful than Tn (see columns 3 and 4).

4. Detection of informative features in explanatory curves with no effect tests

The effect of the explanatory curve on the response sometimes reduces to the effect of some of its

features (parts, pointwise values, ...). Here are two simulations studies to observe if our testing

procedures are relevant to detect such informative features. By simplicity, we consider situations

where the informative and non-informative features of the curves are independent to check if the test

is relevant to detect their respective nature. However, the features of a curve (derivatives, parts)

may be dependent. In this case, the detection of informative features is more complex and require to

consider variable selection tests. No effect tests on estimated residuals might be seen as an heuristic

alternative.

4.1 A first attempt with test statistic Tn

In this section we use the no effect test statistic based on Tn. Hence, the orginal sample of size 300 is

splitted into three subsamples of the same size to compute the test statistic.

Assume first explanatory curves (defined as before) are observed with an additive independent white

noise η, that is to say we observe X̃i(t) = Xi(t) + η(t) instead of Xi(t). A spline approximation (with

three nots and splines of order 3) Z of each curve X is used to remove the independant noise (see Fig

1.a). The empirical rejection probabilities presented in Table 2 show our no effect testing procedure

is able to detect the effect of the de-noised curve Z and does not detect any significative effect of the

residual curve R = X̃ − Z.
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Table 2: No effect tests for the original curve X (unobserved), the denoised curve Z and the residual

part R. Empirical rejection probabilites obtained on 1000 samples with Nboot = 100, α = 0.05 and a

data-driven choice of h = h0 (see Delsol, 2008).

Explanatory variable

Model X Z R

M0 : Y = ε 0.056 0.055 0.054

M1 : Y = 10 exp
(
−
∫ 1
0 X (t) a(t)dt

)
+ ε 0.502 0.505 0.056

Table 3: No effect tests for BM , BM3 and R3. Empirical rejection probabilites obtained on 1000

samples with Nboot = 100, α = 0.05 and a data driven choice of h = h0 (see Delsol, 2008).

Explanatory variable

Model BM BM3 R3

M ′
1 : Y = ε 0.050 0.043 0.062

M ′
2 : Y = 5 exp

(
−
∫ 1
0 BM3 (t) cos (7.5t) dt

)
+ ε 0.493 0.509 0.050

M ′
3 : Y = 24 exp

(
−
∫ 1
0 R3 (t) cos (7.5t) dt

)
+ ε 0.065 0.046 0.523

A similar use of no effect test is finally considered to check if the effect of a brownian motion BM

starting from 0 may be reduced to the effect of its first three principal components scores (explaining

more than 90 percent of the variability). For each simulated sample, three model M ′
1,M

′
2, and M ′

3

have been introduced to cover no-effect of BM , effect of BM reduced to BM3 (projection of BM

on its first three components), and effect of BM reduced to R3 = BM − BM3. As expected, the

effect of BM3 (respectively R3) , which may be regarded as the global shape (see Figure 1.b) of BM

(respectively the deviation of BM from its global shape), is well detected as significative for model

M ′
2 (respectively model M ′

3) and not significative elsewhere. However, even if signal to noise ratios in

models M ′
2 and M ′

3 are similar, a significative effect of BM itself is only detected for M ′
2. The use

of the L2 metric gives a lot of importance to the first components of BM (explaining a great part

of variability of BM) and is hence not relevant when the effect only comes from the residual part

of the trajectory. The use of the semi metric induced by the three first PC scores is equivalent to

consider BM3 as explanatory variable, while the use of a metric based on remaining scores would lead

to consider R3. These no effect tests may be seen as tools to check if rd(x) = E[Y |d(X,x) = 0] is

constant or not. The use of various semimetrics may be relevant to detect the effect of some features

of a curve.

4.2 Using the test statistic T2,n

Because no effect tests based on T2,n seem more powerful and do not require to split the original

sample, let us now consider the no effect test based on T2,n. The test statistic is computed directly

from an original sample of size 100. This makes fair the comparison with the results presented in

the previous paragraph. The empirical rejection probabilities presented in Tables 4 and 5 show our

new test statistic based on T2,n is able to detect informative parts of the curves. As discussed in

the previous section, the use of the L2 metric on the whole trajectory of the brownian motion has a

negative impact on the capacity of the test to detect the effect of R3. However, because no effect tests

constructed from T2,n seem more powerful this effect is fairely often detected even when a L2 metric

is used directly on BM .
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Table 4: No effect tests for the original curve X (unobserved), the denoised curve Z and the residual

part R. Empirical rejection probabilites obtained on 1000 samples with T2,n, Nboot = 100, α = 0.05

and h = 5, 5, 5, and 0.5 respectively.
Explanatory variable

Model X Z R

M0 : Y = ε 0.058 0.058 0.054

M1 : Y = 10 exp
(
−
∫ 1
0 X (t) a(t)dt

)
+ ε 0.997 0.999 0.053

Table 5: No effect tests for BM , BM3 and R3. Empirical rejection probabilites obtained on 1000

samples with T2,n, Nboot = 100, α = 0.05 and h = 0.4, 0.4, and 0.2 respectively.

Explanatory variable

Model BM BM3 R3

M ′
1 : Y = ε 0.052 0.046 0.055

M ′
2 : Y = 5 exp

(
−
∫ 1
0 BM3 (t) cos (7.5t) dt

)
+ ε 0.901 0.960 0.021

M ′
3 : Y = 24 exp

(
−
∫ 1
0 R3 (t) cos (7.5t) dt

)
+ ε 0.455 0.043 0.982

5. Application in spectrometry

Spectrometric curves are an interesting example of functional data. They correspond to the measure of

the absorption of a light emitted in direction of a product in function of its wavelength. Spectrometric

curves have been used to give an estimation of the chemical content of a product without spending

time and money in a chemical analysis (see for instance Borggaard and Thodberg, 1992). It is usual in

chemometrics to make a pretreatment of the original curves (corresponding in some sense to considering

derivatives). The approach described in this work may be used in this context to provide part of an

answer to questions dealing with

• the validity of a model proposed by specialists.

• the existence of a link between one of the derivatives and the chemical content to predict.

• the nature of the link between the derivatives of the spectrometric curve and the chemical content

of the product

• the validity of models in which the effect of the spectrometric curve is reduced to the the effect

of some of its features (parts, points).

6. Prospects

To conclude, the structural procedures presented in this paper open a large potential scope of ap-

plications. They may be relevant to test a structural hypothesis formulated by scientists, to check

if some structural assumptions used to compute an estimator are not significantly rejected, and to

test the validity of some hypothesis coming from a first estimation of the regression operator. They

could be used in an interesting way as part of an algorithm allowing to extract informative features

(parts, points, ...) of the explanatory curve. An other prospect concerns their use in the choice a the

semi-metric d since they may be used to test the regularity of r with respect to a semi-metric d1 under

its regularity with respect to d2 if d1 ≤ d2. Then, T2,n is an alternative to Tn which does not require

to split the original sample and seems to lead to more powerful testing procedures. A lot of work has

to be done on the theoretical study of this new test statistic and the development of other innovative

testing procedures.
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semi-normés, Compte Rendus de l’Académie des Sciences, Paris, 330, 403-406.

[19] Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis: Theory and Practice , Springer-

Verlag, New York.

[20] Gadiaga, D. and Ignaccolo, R.(2005) Test of no-effect hypothesis by nonparametric regression. Afr. Stat.,

1, (1), 67-76.

[21] Hall, P. and Cai, T.T. (2006) Prediction in functional linear regression. (English summary) Ann. Statist.,

34, (5), 2159-2179.
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Figure 1: a) An example of noisy curve X̃ (dotted line), its denoised version Z (dashed line) and the

true curve X (solid line). b) An example of simulated brownian motion trajectory BM (solid line)

and its projection BM3 (dotted line)
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