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INTRODUCTION

Understanding regulatory mechanisms and sensitivity of cellular organizational units in com-

plex biological systems is an important challenge. In medicine, in particular, it will lead to greater

understanding of the processes involved in some diseases. In that context, we have demonstrated

the importance of multi-protein complexes in synthetic lethality and characterized some of the bi-

ological mechanisms involved [1]. Other studies also suggest that some control of phenotype can

be usefully attributed to multi-protein complexes rather than genes or pathways [2–6] and hence

may help provide elucidation of the underlying roles or mechanisms that directly control changes

in phenotype. In the long term, in the case of disease phenotype, knowledge of organizational units

involved in the disease regulator mechanisms will enable us to identify biological targets for drug

therapy and improve the specificity and efficacy of those drugs.

The challenge of understanding cellular regulatory mechanisms by cellular organizational

units is difficult due to the size of the underlying biological network and the heterogeneous nature

of the control mechanisms involved [7; 8]. Indeed, many genes are pleiotropic and their product

play many roles in the cell. It may then not be clear which of those different functions is directly

related to the change in phenotype [4; 9]. Moreover, epistasis can mask the phenotypic effect of

a gene, obscuring the relationship between gene and phenotype [8]. Tools are therefore needed to

identify which function of a gene relates to a disease phenotype. More generally, systems biology

approaches are now required to understand the interactions between the components of a biological

system, and how these interactions give rise to the function and behavior of that system.

In this paper, we promote the concept that while phenotypic changes are often measured by

the manipulation of single genes, such as gene deletion or up-regulation, interpreting the biological

mechanisms that underly the change in phenotype will often depend on higher levels of organization,

such as multi-protein complexes. We propose computational methods and present the use of R

packages [10; 11] to disentangle the multi-protein complexe contribution to disease phenotype in

Saccharomyces cerevisiae.
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METHODS

Data sources

Multi-protein complex co-membership was determined from GO [12; 13], MIPS [14], protein-

protein interactions data obtained from the IntAct database [15], and estimates from tandem affinity

purification-mass spectrometry experiments (AP-MS) [2; 16–19]. This resulted in an estimated

interactome of 1,803 unique genes and 947 multi-protein complexes: 398 curated multi-protein

complexes from the online databases (GO, MIPS, IntAct) and 549 estimated and non-annotated

multi-protein complexes from the AP-MS experiments. The multi-protein complexes estimated

from the AP-MS experiment have a prefix apComplex followed by the author and year of the

experiment and an arbitrary identification number [20].

We define as conditionally essential genes all genes that show fitness defect under some growth

condition, that includes essential and haploinsufficient genes which deletion in rich media induces

lethality. The list of S. cerevisiae rich media essential genes was obtained from the Saccharomyces

Genome Database [21]. Among the 4,918 verified open reading frames (ORFs) believed to com-

pose S. cerevisiae genome (source: www.yeastgenome.org - last updated April 2011) 1,101 are

classified as essential genes [22]. One can access this dataset from the SLGI R package, avail-

able from the Bioconductor Project [11]. The list of haploinsufficient genes was extracted from

Deutschbauer et al. [3] who found that 184 S. cerevisiae genes were haploinsufficient for growth in

Yeast extract/Peptone/Dextrose (YPD). The fitness defect dataset was extracted from Dudley et

al. [4] who created a collection of gene-deletion mutants to determine genes that contribute to a

particular phenotype under 21 different experimental stress conditions. Both datasets, the hap-

loinsufficient and fitness defect data, are included in the PCpheno R package, available from the

Bioconductor Project [11].

Computational and Statistical Methods

Our null hypothesis was that there was no association between a collection of genes that

induced a phenotypic change and some cellular organizational units (e.g., multi-protein complexes,

pathways). To test this hypothesis we considered a multi-faceted approach. First, we used a hy-

pothesis test designed to determine whether there was an effect that could be attributed to that

specific grouping of genes, without testing which cellular organizational units were involved. Then,

if we rejected our null hypothesis of no association between a collection of genes that induced

a phenotypic change and some cellular organizational units, the next step was to identify those

specific organizational units. We thus looked for the cellular organizational units that had an over-

representation of the genes that induced the phenotypic change (e.g., conditionally essential genes).

Density Estimation For each cellular organizational unit, we computed the proportion of

genes that affect the phenotype. We then computed the smoothed histogram of the proportions

and compared it to a reference distribution. Our reference distribution was obtained by randomly

permuting 1,000 times the gene labels for the interactome and computing together, for each per-
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mutation, the new (simulated) proportion of genes that affect the phenotype and the associated

smoothed histograms.

Graph Theory The graph theory procedure is based on the permutation of graphs as pro-

posed by Balasubramanian et al. [23]. Two distinct graphs, Gi = (V,Ei) with i = 1, 2, were formed.

The nodes, V , were the S. cerevisiae genes and they were common to both graphs. In one graph

G1 two proteins had an edge between them if, and only if, they were co-members of one, or more,

cellular organizational units. In the second graph G2 edges were created between all proteins that

were associated with a phenotype of interest, so that if there were k genes associated with the

phenotype of interest then we had a complete graph with k(k− 1)/2 edges. We excluded self-loops

in both graphs. We then computed the intersection of these two graphs and counted the edges in

common. To test whether the number of edges in the resulting graph was unexpectedly large, a

permutation analysis was performed. A reference distribution was obtained by permuting 1,000

times the labels on either G1 or G2 and counting the number of edges in common. A p-value was

computed by comparing the observed counts to the estimated distributions of intersecting edges

issued from the permutations.

Hypergeometric Test We used a hypergeometric test to assess whether a cellular orga-

nizational unit contains more genes that affect the phenotype than expected by chance. The

hypergeometric test is the equivalent of Fisher’s exact test for two-by-two tables. We adjusted the

p-values for multiple comparisons by controlling the family wise error rate using the FDR method.

We report both adjusted and raw p-values as it is not clear that the FDR method is the most ap-

propriate adjustment for this analysis. Indeed, some work remains to be done to properly account

for the fact that most genes are members of more than one multi-protein complex, hence there is

a very complex dependency between the tests. We term the cellular organizational unit for which

we reject this test (p-value ≤ 0.01) as conditionally essential since tightly related to the phenotype

being studied.

Software Implementation and Availability The data used in the statistical analysis in

this paper and the algorithms developed for the proposed computational methods are all available

in the freely distributed open source R/Bioconductor packages [10; 11]. It is integrated into the

R/Bioconductor environment for statistical computing and bioinformatics and run on multiple op-

erating systems including Windows, Mac OS X and Unix.

Supplementary material is available at http://nlmr.free.fr under Science/Papers.

RESULTS AND DISCUSSION

Some phenotype can be attributed to multi-protein complexes In S. cerevisiae, out

of the 4,918 verified ORFs believed to compose its genome, approximately 1,000 ORFs are said to

be essential in rich media environment [22] and 184 are said to be haploinsufficient [3]. In addition

among the numerous experiments to assess the fitness defect of gene deletion in various stressful
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environnement, Dudley et al.[4] identified more than 800 genes that are sensitive in at least one

stressful conditions (out of 21). In order to investigate whether those phenotypic changes can be

usefully attributed to multi-protein complexes, we tested the null hypothesis that there is no asso-

ciation between a collection of genes that induce a phenotypic change and multi-protein complexes.

If no relationship exists between the observed phenotype and multi-protein complex membership,

we expect to see, for a given multi-protein complex, the proportion of genes associated with the

observed phenotype close to the population proportion, e.g., approximately one sixth for essential

genes. If instead an association does exist, we expect that there will be some multi-protein com-

plexes that have a large proportion of proteins associated to the observed phenotype and some with

a small proportion, but fewer than expected (in the statistical sense) with moderate proportions.

We tested our hypothesis using two omnibus tests and our current estimate of the S. cerevisiae

multi-protein complex interactome [20]. The first test is based on density estimation [24]. The

second approach is based on the permutation of graphs proposed by Balasubramanian et al. [23]

(see Materials and Methods for details). Figure 1 shows the results of both approaches for the

essential genes.

**** Figure 1 *****

Figure 1 Panel (a) represents the outputs of the density estimation approach. This plot

provides a heuristic tool for assessing whether the observed density (dark line) is similar to those

generated under the null hypothesis of no association between the genes inducing a phenotype

and the multi-protein complexes used (gray lines). The observed data show that there is not only

an over-abundance of multi-protein complexes with values near 0 but also an over-abundance of

multi-protein complexes with proportions of essential genes near 1. The curves representing the

smoothed histograms for the permuted data are clearly very different from the observed data, with

larger values near the center (proportions between 0.4 and 0.6) and lower values near 0 and 1.

We note that while the observed proportions must be between zero and one, this constraint is not

imposed on the smoothed histograms, and they do extend beyond 0 and 1. This is not particularly

problematic as all estimates (both the observed and the permutations) are subject to the same

procedure. We could use ordinary histograms, but they simply could not be plotted one on top

of the other, so we could not easily visualize the difference between the observed and permutation

data (also for visualization purposes only 100 out of the 1,000 permutations performed are shown

in Fig. 1). We also remark that all curves show a number of peaks. These arise due to the discrete

nature of the multi-protein complexes. There are many complexes composed only of 2, 3 and 4

proteins. For these the observed proportions are similarly limited (e.g., a cluster of size 3 can have

proportions 0, 1/3, 2/3 or 1). Figure 1 Panel (b) presents the results of the graph theory approach.

The histogram represents the distribution of the number of edges observed using the permutation

model, under the null hypothesis, and the red line indicates the number of edges in the observed

data. The observed number of edges is far larger than any value from the permutations and hence

the permutational p-value is less than 1 in 1,000. Theses results provide strong evidence against

the null hypothesis and indicate that some association exists between the genes related to those
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particular phenotypes and the multi-protein complexes used in our analysis.

For the haploinsufficient genes and stress conditions the effect appears to be much less sub-

stantial (Fig. S1 for haploinsufficient dataset). One possible explanation is that this is due to the

small number of those genes represented in our interactome (Tab. S1). For the haploinsufficient

genes for instance, the outputs are different by an order of magnitude compare to the essential

genes; about 30% of all genes in yeast are essential under the conditions tested while only 3%

are haploinsufficient and only 152 out of the 183 haploinsufficient genes are represented in our

interactome. However the results of the graph theory approach provide evidence against the null

hypothesis for most conditions and indicate that some association exists between the genes associ-

ated with those particular phenotypes and the multi-protein complexes used in our analysis.

Multi-protein complexes contributing to phenotype Since the overall tests provided

strong evidence against the null hypothesis and demonstrated that conditional essentiality can be

usefully attributed to multi-protein complexes, we looked for the multi-protein complexes that have

an over-representation of the genes inducing those phenotypic changes. To this aim we propose

to apply a hypergeometric test approach with false discovery rate (FDR) adjustment and a p-

value threshold of ≤ 0.01 (see Materials and Methods). Using the hypergeometric test approach,

we identified several complexes composed of a significant number of conditionally essential genes

(Tab. 1 and 2). In an attempt to circumvent multiple testing correction, we also tested the use of

a model-based clustering algorithm proposed by the R package mclust [25]. We defined a priori

2 groups: conditionally essential complexes and non-essential complexes. The clustering approach

then allowed computing the probabilities (along with a measure of certainty) that a multi-protein

complex belongs to the different groups. The results were in accordance to our current approach

(data not shown) however the discrete nature of our data and the k = 2 clustering imposed by our

hypothesis complicate their interpretation.

For essentiality (Tab. 1) and haploinsufficiency phenotypes(Tab. S2), the annotated com-

plexes are mostly involved in the replication and transcription machineries (e.g., the pre-replication

and replication complexes, the small nucleolar ribonucleoprotein complexes). This result is not so

surprising as DNA replication and protein transcription are very critical processes. Additionally,

the molecules and mechanisms that ensure a faithful DNA replication and protein transcription

have been highly conserved throughout evolution [26].

***TABLE1 ***

In the stress condition experiments [4], the results should be taken with caution due to the

small number of tested genes represented in our interactome (Tab. S1). Nevertheless in some ex-

periments, the observed phenotypes seem to be related to fewer multi-protein complexes (Tab. 2).

It is not that surprising as most media used by Dudley et al. [4] are drugs that should have

specific targets. For instance the cycloheximide, an inhibitor of protein biosynthesis, act on chro-

matin remodeling complexes (GO:0000508 ) and transcription co-activator complexes (GO:0016593,
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MIPS-230.20.10 ). It is also interesting that some of the multi-protein complexes involved in phe-

notypic changes induced by the anti-fungal drug Paraquat are similar to the one found for the

anti-fungal drug Nystatin tested by Giaever et al. (2002) (Tab. S5). In addition we note that

similar multi-protein complexes relate to different conditions. For instance, the H+-transporting

ATPase, vacuolar appears especially critical

*** TABLE2 ***

While analyzing the list of multi-protein complexes related to phenotype, we note some re-

dundancy in term of multi-protein complex definition. Indeed some caution is needed as some

multi-protein complexes overlap substantially (within and between databases) and have similar

descriptions. As an example, the MIPS-510.120 complex (RNA polymerase III ) is entirely con-

tained in the GO:0005666 complex (DNA-directed RNA polymerase III complex ). In fact, it is

well known that multi-protein complexes can have several functional isoforms but it is virtually

impossible to distinguish them via AP-MS or pull-down technologies if all variants are present [16].

It is also difficult to accurately represent this behavior in the data structures used to model these

data. Furthermore, Lichentenberg et al. [27] have shown that many cell-cycle related complexes

use a ’just-in-time’ assembly mechanism before being active. Therefore, some complex definitions

do not correspond directly to functional complexes as their different functional isoforms are not

necessarily well separated in the time and space. High throughput interaction protein experiments

are also not error free [28]: difficulties to identifying and annotating complexes, technological prob-

lem detecting small complexes, etc., all lead to errors. Nevertheless those experimental limitations

and data representation issues are likely to be overcome with the improvement or development of

technologies. And our methods will be directly applicable to such improved predictions when they

become available.

Finally, as suggested by other [9; 29], we also considered the role of pathways in explaining

phenotypic changes at the system level. We thus used the well-known KEGG database [30] to

test whether for each KEGG pathway we observed a higher proportion of genes associated with

the observed phenotypes than expected by chance. The smoothed density approach indicated

substantial discrepancies (Fig. S4). Many more pathways than expected by chance have no genes

associated with the observed phenotypes, suggesting that the null hypothesis is not tenable for either

the haploinsufficient genes or the essential genes. In fact, out of the 99 known KEGG pathways,

28 are known to have no essential gene and 83 have no haploinsufficient gene.

CONCLUSION

In this paper we have confirmed the hypothesis that some phenotypes can usefully be attributed to

multi-protein complexes. Our results support and supplement the observations by Yu et al. [9] that

protein-protein interactions are condition-specific and relate to the pleiotropic properties of genes.

We showed that genes that did not exhibit essential phenotype under rich medium condition as used

by Giaever et al. [22] could be critical under other conditions, i.e. conditionally essential. As a proof
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of principle, we used the essential genes characterized by Giaever et al. [22], the haploinsufficient

genes identified by Deutschbauer et al. [3] and the fitness genes characterized by Dudley et al [4]

under stressful condition. However the method applies to virtually any system where phenotypic

outputs are measured for single gene perturbations defined a priori. For instance one could make

use of phenotypic datasets from the YeastMiner database (http://yeastmine.yeastgenome.org)

which to our knowledge is currently the richest source of phenotypic data. [31]. In addition, to

assess these relationships, we provide open source computational and statistical tools as R packages

available on the Bioconductor website [10; 11].
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Figure 1: Essential genes are not randomly distributed among multi-protein complexes. Panel A. Smoothed

histograms of the proportion of genes per multi-protein complexes that are associated with a phenotype.

The dark line represents the observed data and the light curves represent the permuted data. Only the first

100 simulated density estimates out of 1,000 permutations are displayed for visualization efficiency. Panel

B. Distribution of the number of edges, under the null distribution (1,000 permutations) of genes randomly

distributed in multi-protein complexes (grey histogram)compared to the number of observed edges, dashed

line.
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Observed Expected Size Odds P-value (adj) P-value Description

GO:0005732 42 21.59 56 5.03 1.87e-05 1.98e-08 small nucleolar ribo...

GO:0005666 17 6.55 17 Inf 3.84e-05 8.11e-08 DNA-directed RNA pol...

MIPS-410.30 16 6.17 16 Inf 6.74e-05 2.13e-07 Pre-replication comp...

apCompGavin2002: 228 18 7.32 19 29.43 8.87e-05 3.75e-07 -

GO:0005656 15 5.78 15 Inf 1.06e-04 5.61e-07 pre-replicative comp...

MIPS-360 28 13.88 36 5.77 2.37e-04 1.50e-06 Proteasome

MIPS-410.35 18 7.71 20 14.70 2.84e-04 2.40e-06 Replication complex

apCompGavin2002: 231 18 7.71 20 14.70 2.84e-04 2.40e-06 -

MIPS-510.120 13 5.01 13 Inf 4.07e-04 3.87e-06 RNA polymerase III

apCompGavin2002: 224 14 5.78 15 22.76 1.35e-03 1.43e-05 -

GO:0046540 22 10.79 28 6.00 1.40e-03 1.63e-05 U4/U6 x U5 tri-snRNP...

apCompGavin2002: 203 11 4.24 11 Inf 2.10e-03 2.66e-05 -

apCompGavin2002: 50 19 9.25 24 6.20 3.72e-03 5.36e-05 -

apCompGavin2002: 12 16 7.32 19 8.68 3.72e-03 5.50e-05 -

GO:0000172 10 3.85 10 Inf 4.39e-03 6.96e-05 ribonuclease MRP com...

GO:0005847 13 5.78 15 10.54 7.83e-03 1.70e-04 mRNA cleavage and po...

GO:0005669 13 5.78 15 10.54 7.83e-03 1.70e-04 transcription factor...

MIPS-360.10.10 13 5.78 15 10.54 7.83e-03 1.70e-04 20S proteasome

apCompGavin2002: 43 13 5.78 15 10.54 7.83e-03 1.70e-04 -

GO:0005849 9 3.47 9 Inf 7.83e-03 1.82e-04 mRNA cleavage factor...

GO:0005655 9 3.47 9 Inf 7.83e-03 1.82e-04 nucleolar ribonuclea...

apCompGavin2002: 205 9 3.47 9 Inf 7.83e-03 1.82e-04 -

GO:0005681 22 11.95 31 3.99 9.41e-03 2.29e-04 spliceosomal complex

Table 1: Multi-protein complexes associated with Essentiality (P-value<0.01). Observed: number of essential

genes in the complex; Expected: expected number of essential genes in the complex; Size: total number

of genes in the complex; Odds: odds ratios; P-value (adj): adjusted P-value of the Hypergeometric test

(bonferroni correction); P-value: P-value of the Hypergeometric test; Description: annotation of for the

given protein complex. Note that when the multi-protein complex is entirely composed of essential genes

(Observed = Size) the odds ratio are infinite (Inf).
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Dudley et al (2005) Interactome p.value nb.C 0.01 nb.C 0.05

cyclohex 164 79 0 0 6

FeLim 35 17 0 3 3

MPA 11 6 0.001 0 2

Paraq 36 22 0.001 3 5

YPGal 41 20 0.002 0 1

YPRaff 31 16 0.002 2 4

HU 87 52 0.003 0 5

CaCl2 180 88 0.007 2 7

YPGly 206 76 0.008 3 4

UV 32 22 0.009 1 1

EtOH 75 51 0.012 - -

YPLac 159 52 0.014 - -

CAD 83 45 0.027 - -

lowPO4 34 10 0.037 - -

pH3 16 8 0.052 - -

rap 119 51 0.071 - -

HygroB 264 109 0.145 - -

Caff 208 105 0.192 - -

NaCl 57 29 0.244 - -

benomyl 34 19 0.594 - -

DTT 5 - - - -

Sorb 8 - - - -

Table 2: Dudley et al. (2005) environmental stress conditions. Each row corresponds an environmental stress

condition. The first column indicates the number of mutants with growth defect in Dudley’s experiment. The

second column indicates the number of those deleted genes in the interactome. The third column presents

the p-value obtained by the graph theory test. A p-value <= 0.01 indicates that those deleted genes are

not randomly distributed in the multi-protein complexes of the interactome. The fourth and fifth columns

indicate the number of multi-protein complexes involved at a FDR adjusted pvalue <= 0.01 and 0.05. The 22

environmental conditions listed are: benomyl: 15ug/ml benomyl,microtubule function; CaCl2: 0.7M calcium

chloride, divalent cation; CAD: 55uM Cadmium, heavy metal; Caff: 2mg/ml Caffeine; cyclohex: 0.18ug/ml

cycloheximide, protein synthesis; DTT: unknown; EtOH YPD + 6% Ethanol; FeLim: irion limited,nutrient

limited condition; HU: 11.4mg/ml Hudroxyurea, DNA replication and repair; HygroB: 50ug/ml hygromycin

B, aminoglycosides; lowPO4: low phosphate, nutrient limited condition; MPA: 20ug/ml mycophenolic acid,

transcriptional elongation; NaCl: 1.2M sodium chloride, general stress condition; Paraq: 1mM paraquat,

oxidative stress; pH3: low pH, general stress condition; rap: 0.1ug/ml rapamycin, protein synthesis; Sorb:

1.2M sorbitol, general stress condition; UV: 100J/m2 ultra-violet, DNA replication and repair; YPGal 2%

galactose, carbon source; YPGly 3% glycerol, carbon source; YPLac 2% lactate, carbon source; YPRaff 2%

raffinose, carbon source.
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son, B. André, et al. Functional profiling of the saccharomyces cerevisiae genome. Nature, 418(6896):387–

391, Jul 2002.

[23] R. Balasubramanian, T. LaFramboise, D. Scholtens, and R. Gentleman. A graph-theoretic approach to

testing associations between disparate sources of functional genomics data. Bioinformatics, 20(18):3353–

3362, Dec 2004.

[24] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

[25] Chris Fraley and Adrian Raftery. Model-based methods of classification: Using the mclust software in

chemometrics. Journal of Statistical Software, 18(6):1–13, 1 2007.

[26] Park K and Kim D. Localized network centrality and essentiality in the yeast-protein interaction

network. Proteomics, 9(22):5143–54, 11 2009.

[27] U. de Lichtenberg, L.J. Jensen, S. Brunak, and P. Bork. Dynamic Complex Formation During the Yeast

Cell Cycle. Science, 307(5710):724–727, 2005.

[28] T Chiang, D Scholtens, D Sarkar, R Gentleman, and W Huber. Coverage and error models of protein-

protein interaction data by directed graph analysis. Genome Biology, 8(9):R186, sep 2007.

[29] R. Kelley and T. Ideker. Systematic interpretation of genetic interactions using protein networks. Nat

Biotechnol, 23(5):561–566, May 2005.

[30] M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research,

28:27–30, 2000.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS022) p.321

http://www.ebi.ac.uk/intact/site


[31] Stacia R Engel, Rama Balakrishnan, Gail Binkley, Karen R Christie, Maria C Costanzo, Selina S Dwight,

Dianna G Fisk, Jodi E Hirschman, Benjamin C Hitz, Eurie L Hong, Cynthia J Krieger, Michael S

Livstone, Stuart R Miyasato, Robert Nash, Rose Oughtred, Julie Park, Marek S Skrzypek, Shuai Weng,

Edith D Wong, Kara Dolinski, David Botstein, and J Michael Cherry. Saccharomyces genome database

provides mutant phenotype data. Nucleic Acids Research, 38(Database issue):D433–436, January 2010.

PMID: 19906697.

RÉSUMÉ (ABSTRACT) — optional

In Saccharomyces cerevisiae, we and others showed that molecular interactions within and

between multi-protein complexes are critical for cell fate. Recent studies also suggest that some

control of phenotype can be usefully attributed to multi-protein complexes rather than genes or

pathways. Indeed, while phenotypic changes are often measured by the manipulation of single genes

(deletion, up-regulation, etc.), the biological mechanisms that underly the change in phenotype might

depend on higher levels of organization, such as multi-protein complexes. In this work we thus

attempted to assess the role of multi-protein complexes in determining phenotype. We tested whether

gene products known to be associated with a phenotype are randomly distributed in the interactome

or cluster in specific multi-protein complexes. In addition, since the expression of phenotype highly

depends on the environmental conditions, we investigated different datasets to evaluate if similar

phenomena (random distribution or cluster) could be observed and thus associate multi-protein

complex activity (fitness) to environmental conditions.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS022) p.322


