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ABSTRACT 
 
The North-Central area in Venezuela has two restrictions for installing toilet paper factories: First, the only fresh water 
available in the area should be used for human consumption. On the other hand, all effluents from the area are poured 
into Valencia Lake. The lake ecosystem presents significant damage due to the effect of biological and chemical wastes. 
It is recommended to build two closed circuit water treatment plants to minimize the environmental impact and 
simultaneously supply the huge amounts of water required for the toilet paper factory under study. These treatment 
plants allowed water to be reused through applying the clarification procedure, which consists of adding flocculants, 
coagulants and sulfuric acid. The water coming from this type of treatment plant should meet certain quality standards 
if it is going to be used to manufacture toilet paper. The quality of clarified water depends on the behavior of the 
following variables: pH, ionic demand, turbidity and total suspended solids. Statistical behaviour of these four 
variables was monitored applying multivariate control charts. These closed circuits have an efficiency of 95%, a 4.77% 
of paper sludge which is deposited in a landfill and 0.23% of water that must be restored. The combined effects of both 
plants produce a daily volume of 5,000,000 cubic meters of clarified water. Comparing this figure with the value of 50 
liters proposed by the United Nations as the estimate daily amount required by a person for consumption, cooking and 
cleaning, this complete process creates a saving equivalent to the daily water requirement for 100 million people. On 
the other hand, this paper proposes a type Cpk index to assess the quality of the clarified water, setting bounds to the 
probability of the process being within specifications.  
Keywords: Clarified water, environmental impact, multivariate process control, multivariate extension of process 
capability index. 
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1.- INTRODUCTION 
 

Valencia Lake is the largest natural freshwater lake of Venezuela. It has a surface area of 350 Km2 and is 
located in the central-north part of the country, which is the most densely populated. Valencia Lake lies on 
an east-west tectonic depression between two ranges of mountains: Cordillera de la Costa on the north and 
the Serrania del Interior in the south. The lake became endorheic about 250 years ago, when the discharge 
level (427 m) was exceeded due to desiccation.  
 
Intensive human intervention of the watershed and a reduction of groundwater flow have been mentioned for 
causing that rapid decline of the lake level. A minimum was achieved in 1976 (400.8 m above sea level). 
However, the lake level has recovered to 405 m with water provided from another watershed for urban 
consumption. Incoming untreated wastewater from domestic, agricultural and industrial activities of about 2 
million people contribute to eutrophication, contamination and salinization of the lake. 
 
The area around the lake has two restrictions for installing toilet paper factories: First, the only fresh water 
available should be used for human consumption. On the other hand, all effluents from the area are poured 
into Valencia Lake. It is recommended to build two closed circuit water treatment plants to minimize the 
environmental impact and simultaneously supply the huge amounts of water required for the toilet paper 
factory under study. These closed circuits have an efficiency of 95%, a 4.77% of paper sludge which is 
deposited in a landfill and 0.23% of water that must be restored. The combined effects of both plants produce 
a daily volume of 5,000,000 cubic meters of clarified water. 
 
The clarification process has three steps: the first one is to add sulfuric acid since to obtain between 6 and 6.9 
the water pH. In this range, the coagulant has its best performance. The second step is to add the coagulant. 
The goals of coagulation are to decrease particle stability and to reduce its mutual repulsion resulting in a 
stable suspension with no net charge. The third step is to add the flocculant. The purpose of flocculation is to 
bring particles together to form well settling particles. The quality variables of the clarified water are: pH, 
total suspended solids, turbidity and ionic charge. The clarified water process is evaluated in an integral way 
that means the statistical relations between variables will have effect in the final quality of the water.  
 
One of the most important performance indicators is the process capability index. Using this indicator it is 
possible visualizing how the process is fulfilling all the quality specifications. In addition, the relationships 
between the quality variables define the appropriate focus. These variables may be independent or correlated. 
For the independent case, Bothe (1991) proposed a technique to calculate a real capability index Cpk to an 
entire product. If the quality variables are correlated the multivariate techniques must be used. Several 
authors have worked in multivariate capability indices. Wierda (1993) proposed a multivariate index MCpk 
calculating the integral of the original variables, Chen (1994) proposed an index over a rectangular solid 
tolerance zone, Boyles (1996) used the lattices concept to propose an exploratory capability analysis, Wang 
and Chen (1998) proposed capability indices for multivariate normal distributions using principal component 
analysis and the geometric mean, and Wang and Du (2000) extent the paper of Wang and Chen (1998) at the 
multivariate non normal cases, Foster et al. (2005), proposed using the coefficients generated through a new 
representation named POBREB and Jeh-Nan and Chun-Li (2010), proposed a new multivariate indices 
named NMCp and NMCpm. These are some techniques proposed to calculate the multivariate capability 
indices. This paper proposes a type Cpk index to assess the quality of the clarified water, setting bounds to the 
probability of the process being within specifications. 
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2.- MATERIALS AND METHODS 
 
2.1  Technical procedures   
 The samples were taken each four hours. This frequency is greater than the water residence time in the 

clarifier tank and this helps to solve the autocorrelation problems.  
 The quality variables considered in this study are the following: 
 Ionic charge. This characteristic was assessed according to the instructions for use the equipment Mütek 

PCD 04 and it is measured in microequivalents (μeq). 
 Turbidity. It was obtained following the “Standard Methods for the examination of water and 

wastewater”. Method 2130. Turbidity is measured in Nephelometric Turbidity Units (NTU).  
 Total suspended solids. This variable is obtained following the “Standard Methods for the examination 

of water and wastewater”. Method 2540 D. The TSS mass is measured in mg solids per liter of water 
(ppm).  

 pH . The pH was obtained following the test method ASTM  E 70-07 “Standard Test Method for pH of 
Aqueous Solutions With the Glass Electrode”.  

 Table 1 shows the lower specification level, target and upper specification level for the quality 
variables. 

Table 1.- Quality variable specifications     

  charge (μeq/g) turbidity (ntu) 
solids 
(ppm) pH 

Lower level -0.12 20 5 6 
Target -0.10 45 12 6.3 
Upper level -0.05 70 18 6.9 

 
2.2 Statistical procedures 
 Phase I 
 This phase explores an historical sample of 100 observations, in order to obtain references to build the 

control limits. The following steps should be followed: 
 • Assess univariate and multivariate normality (Mardia Tests). 
 • Draw univariate and multivariate control graphs, to determine if the process is under control. 
 • Determine the main variability directions, through which the second phase is going to be monitored 

using a dynamic PCA. 
 • Compute a multivariate  capability  index (Cpk.mult)  to  evaluate  the  global behaviour of the 

process. 
 Phase II 
 This phase performs a programmed observation of production in order to monitor the process in real 

time: 
 • Monitoring through univariate and multivariate control graphs. 
  Control graphs are drawn, based on the references obtained in phase I, to detect special signals. 
 • Monitoring through dynamic PCA. 
  Real time monitoring [7] refers to the principal directions of variability obtained in phase I. The 

dataset observed in phase II is used as testing sample. To capture the eventual changes in the 
covariance structure when a new observation is available, a measure of the lack of fit is calculated 
as the standardized difference between a p-variant observation, say xi, and its orthogonal projection 
on the subspace defined by the a variability principal directions:  

 
      (1) 
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    This statistic can be approximated by a chi-square distribution χ2
(p-a). In case of significance, the 

corresponding observation is considered as a likely “special cause”, otherwise it is added to the 
dataset. 

 
2.3 Process capability indices Cp and Cpk 
 The Cp index compares the difference between the specification limits of the process: upper 

specification limit − lower specification limit = USL − LSL with the central 99,73% of data (no more 
than 27 in 10.000 units will fall outside these limits): (μ + 3σ) − (μ − 3σ)  =  6σ,  and it is defined as:  

 
 Cp  =    

 It is assumed that the characteristic to be considered is normally distributed. Several authors (Ryan, 
2000) state that Cp is a poor measure of process capability since it ignores the process mean. This index 
measures just the potential process capability only if the process mean is centered between the 
specification limits.  

 On the other hand, the Cpk index is a measure of the capability of one side of the distribution, the side 
for which the larger of the two proportions nonconforming will result. It is defined as: 

 Cpk  =  (1/3) Zmin 
 
 where Zmin =  min (Z1, Z2), number of standard deviations that the closest specification limit is to μ, 
 with Z1 = (USL − μ)/σ  and  Z2 = (μ − LSL)/σ . 
 Clearly, Cpk is an improvement over Cp since it is a function of the process mean. However, it has the 

limitation that there is not a one-to-one correspondence between Cpk and the percentage of 
nonconforming units. 

   
2.4 Multivariate capability index - a proposal  
 In this section we propose a procedure to obtain a type Cpk index to evaluate the performance of 

a multivariate process, setting bounds to the probability of the process being within 
specifications. We denote the quality characteristics as X1, X2, … Xp and the event Aj = {the 
process meets the requirement in Xj}, j=1,2,...p. The proposed index, denoted by Cpk.mult, is 
based on the following expressions: 

 i.- Prob (process  is within specifications) =   Prob (Aj , ∀ j=1,2,…p) =  Prob (∩ Aj) 
 ii.-  Prob (∩ Aj)   ≤  min {Prob (Aj ),  j=1,2,…p} 
 iii.- Prob (∩ Aj)   ≥  1−∑ Prob (Aj

c )   
 iv.- From ii and iii, bounds  for the probability of the process being out of specifications are obtained: 
  pl = 1 − ∑ Prob (Aj

c )  ≤  p = Prob (∩ Aj)  ≤  pu = min {Prob (Aj )  j=1,2,…p}  ⇒ 
  ql = 1 − pu   ≤   q = 1−p   ≤   qu = 1 − pl 
 v.- The index is obtained as: 
    Cpk.mult    =    (⅓)  min { Φ-1((1−pu)/2), Φ-1((1+pl)/2)} (2) 
  where Φ denotes the cumulative normal distribution function.  
  It is important to note that Cpk.mult   is a function of the lower and upper limits of the proportion of 

non conforming units. 
 This proposed index is calculated from the original variables as well as from the principal components, 

following [10] and [5]. 
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3.- RESULTS 

 
3.1 Phase I 
 In order to reach stability in the process, a monitoring of the historical observation was done. The 

assumption of multivariate normal distribution was tested by Mardia procedure (p-value = 0.388).  
 As the quality variables are significantly correlated, there is a stronger need for using multivariate 

control charts instead of charts for individual variables.  Figure 1 shows that the process has reached 
stability.  

 
 

 

 

 

 

 

 

 

Figure 1.- Tsquared chart 
 

 A PCA was done on the covariance matrix for the first 100 observations to understand the structure 
of the relationships between the quality variables. The first factor accounts for 97.37% of the total 
process variability (Table 2). The correlations between the original variables and the factors are 
examined to understand the nature of the component. The first pc is a contrast between the solid and 
turbidity measurements and the ionic charge. A visual inspection (Figure 2) reveals that the clarified 
water samples in the beginning of the process are mostly located at the upper right of the diagram, 
while those at the lower left side correspond to the rest.  In addition, we can observe that the entire 
sample lie inside the tolerance region defined by pc1 and pc2, and besides the target is placed next to 
the origin. 

   

Table 2.- Results of the PCA   
 Correlation   

pc1 pc2 pc3 
Variables charg 0.67 -0.35 0.17 

turbi -1.00 0.00 0.00 
solid -0.67 0.01 0.00 
ph -0.12 0.00 0.99 

Eigenvalue  24.25 0.65 0.00 
% explained of total variability 97.37% 2.61% 0.02% 
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Figure 1.- Tsquared Chart 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.- Factorial Plot 
 
 Figure 3 shows the univariate capability index for each variable in the process. Obviously, we need the 

values of these indexes to obtain Cpk.mult. It can be seen that Pp and Ppk for turbidity, solids and pH 
indicate an excellent performance. The same is not true for charge whose distribution is not centered 
between the specification limits. 

 

   

 
Figure 3.- Process capability of quality variables 
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 As shown in Table 3, the ability of process to meet the engineering requirements measured by Cpk.mult 
(1.02) is small. The level of nonconforming samples lies between ql = 2252 ppm and qu = 2259 ppm. 
These results suggest that some actions must be taken in order to promote improvements in the process. 

  
Table 3 Multivariate process capability index - variables 

Cpk.mult ql qu ppmu ppml 
1.01796 0.002252 0.002259 2252.3 2259.0 

 
 Table 4 shows the evaluation of the process by using Cpk.mult based in successive combinations of the 

principal components. The results agree with the principal directions of variability, as can be seen in 
Table 2. The index computed only with the first component (1.71) indicates a high process capability in 
this direction while Cpk.mult based in the two first components considerably reduces its performance. This 
situation is due to the particular relationship between charge and solids. On the other hand, Cpk.mult based 
in pc1 and pc3 (1.39) indicates a good performance because here the variability is described by samples 
at the beginning of the process, with high levels in turbidity and solids, and low levels in charge, 
changing progressively to an inverse profile at the end, keeping constant pH along the process. 

 
Table 4 Multivariate process capability index - components 

 Cpk.mult ql qu ppmu ppml 
pc1 1.71019 0.000000 0.000000 0.29 0.29 
pc1+pc2 0.98928 0.002999 0.002999 2998.72 2999.01 
pc1+pc3 1.38887 0.000031 0.000031 30.63 30.92 
pc1+pc2+pc3 0.98824 0.002999 0.003030 2998.72 3029.64 

 

3.2 Phase II 
 Figure 4 represents the lack of fit of the kth new observation in phase II (k = 1,2...51) respect to the 

variability structure defined by phase I, together with the added observations until time k-1. It is evident 
that there are not significant gaps of datasets in phase II respect to the structure in reference. In addition 
we can observe that there is a progressive better adaptation all along. 

  

 

Figure 4.- Time series plot of error 
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4.- CONCLUSIONS 
 
Capability evaluation of multivariate process is usually carried out using univariate indices in a separate way. 
The objective of this study is to propose a practical tool for assessing process capability in case of normal 
multivariate data, and to put it in practice in the specific context of the clarification procedure used in a water 
treatment plant. The proposed multivariate index Cpk.mult is a function of the proportion of non conforming 
units, and it can be applied both on the original data and on the transformed data via principal component 
analysis. Therefore its use is less restrictive about distributional assumptions and provides as added value the 
comprehension of the underlying aspects of the variability of the process. 
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