Water resource accounting and statistical analysis of water use in Beijing Yachun GAO¹, Minxue GAO², Xiaozhen WEI³, Yan PING⁴

Abstract: Beijing is a city which is seriously short of water. The rapid growth of population together with the increasing competition for water between agriculture, industrial and urban use results in unprecedented pressures on water resources in Beijing. In order to ensure the sustainable development of Beijing, we must implement strict water resource management and increase water use efficiency substantially.

To use water resources efficiently in Beijing, we needed to analysis the water using data of Beijing in detail. The purpose of this paper is to provide decision making basis for management of water resource. In this paper, we uses the data provided by Beijing Water authority and Beijing Statistical Bureau, together with the actual situation of water in Beijing, makes quantitative analysis of water resource of Beijing. This paper establishes water accounting framework by combining the idea of water resources accounting and input-output accounting to make input-output analysis for water resources.

In order to establish the water input-output table, we need to compile the physical quantity use table of water resources by means of water using data and the characteristics of water resources in Beijing. Combing the water use data and input-output table, we can construct the water input-output table. Then, based on the water input-output table, we can analyze the water use in Beijing.

Key words: water resource accounting, input-output analysis, water use coefficient

¹ Yachun GAO, PhD student, school of statistics in Renmin University of China, mainly engaged in environment accounting.

² Minxue GAO, professor, school of statistics in Renmin University of China, mainly engaged in national economic accounting and environment accounting.

³ Xiaozhen WEI, Deputy Chief of Beijing Statistical Bureau.

⁴ Yan PING, Deputy Director of Beijing Statistical Bureau.

1. Introduction

Water is very important for development; it is not only the important elements for ecosystem integrity, but also plays an important role in grain cultivation, energy production, many industrial goods and services production, but as the population growth and the competition for freshwater between agriculture, urban and industry become more and more intense, many areas appear "water crisis", seriously hindered the economic and social development. The water resources in Beijing are very shortage, the water resource per capital is only 202 cubic meters in 2008, according to the United Nations for extreme water shortage alarm standards of 500 cubic meters per capital, the water shortage problem in Beijing has been very serious. Extreme lack of water resources together with the rapid growth of population and economic, the interactions of these two aspects are unfavorable for the sustainable development. In order to ensure the sustainable development for Beijing, one method is to increase the water supply (such as South-to-North Water Diversion Project or the Yellow River water diversion to Beijing); another method is to control the population and city size. But in the long term, diversion water form other areas in large scales is not a long term solution for Beijing, it can only solve the immediate need, but also influence the water supply of other areas, control the population and city size are also very difficult to achieve for Beijing in a short term. Therefore, in order to achieve the sustainable development for Beijing, we need to rely on the most stringent water management system, starting form the water resource management, improve water use efficiency.

In order to improve water use efficiency, strengthening water resource management, we need to analysis the water use data of Beijing in detail. By means of the data provided by Beijing Water Authority and Beijing Statistical Bureau, together with the water resource and water use conditions of Beijing, this paper compiled water resource use table according to water resource accounting principle, and based on household production and consumption accounting principle, this paper improved the traditional input-output table, then use water resource input-output model analyze the relationship between input and output in the water resource using process.

2. Analysis of water resource and water use in Beijing

The figure 1 is rainfall precipitation changes in every-5-year from 1986-2008. From this figure we can see the rainfall precipitation showing a decline trend on the whole, especially during 2001-2005, the rainfall precipitation is the least.

Figure 1: rainfall precipitation changes in every-5-year

Figure 2 reflects the surface water resource changes during 1986-2008, we can see surface water also showing a decline trend; especially in 1999, surface water is the least.

Figure 2: surface water resource changes during 1986-2008

Figure 3 reflects the groundwater situation, we can see the descend speed of the average depth of groundwater was accelerating; that is to say the situation of groundwater was deteriorating.

Figure 4 was total water resource changes in every-5-year from 1986-2008, we can see the total water resource was also declined.

Figure 4: total water resources changes in every-5-year from 1986 to 2008

However, as the water resource supply seriously shortage, the population and the economic growth very fast, from figure 5 and figure 6 we can see, from 1986-2008 the constant price GDP and the population in Beijing increase substantially.

Figure 5: constant price GDP in Beijing from 1986 to 2008 (1980=100)

Figure 6: resident population in Beijing from1989 to 2008

Figure 7 and 8showing that although the water resource supply was seriously shortage, and the expansion of economic activity and population, there is a clearly decline of total water use in Beijing, which is the result of substantial decline of water use per GDP.

Figure 7: total water use in Beijing from 1986 to 2008

Figure 8: water use per GDP in Beijing from 1988 to 2008

From above analysis, we can conclude that Beijing had made remarkable achievements in water saving and water use efficiency improving.

3. Improving of traditional input-output analysis

Improving the input-output analysis need take two steps, the first step is compiling a water resource use accounting table. The second step is incorporating the household sector into input-output analytical framework.

3.1 compiling of water resource use accounting table of Beijing in 2007

By learning the theory and method of water resource accounting in international literature, combined the water resource accounting and input-output accounting, this paper put forward water resource accounting and analytical framework based on input-output accounting, provide the theoretical foundation for water resource input-output analysis.

Table1 is the simplified form of water use accounting table of 2007, in the horizontal, we divide water users into primary industry, secondary industry, tertiary industry and household, all together 43 sectors. In vertical, we divide the source of water into directly obtained from the environment and from other economies. Among them, from the environment divide into surface water and ground water, from other economies divide into running water, sewage treatment back to the dosage and waste water. We set the running water supply item is to avoid repetition calculate, that is surface water, groundwater and running water repetition calculate. In the total use, we will subtract the item. The waste water is mainly supplied to sewage disposal and recycling industry. The last row is fresh water use, it equals surface water, groundwater, running water then subtract running water supply.

		Primar		Secondary	ndustry		Tertiary indu	stry		househol	d		Tota
		У											1
		industr											wat
		У											er
		agricult	Coal	Industr	buildi	Seconda	Transportat	••••	Tertiar	urban	Rural	househ	use
		ure	mining and	ial sub-tot	ng indust	ry	ion and warehousin		y industr	househ	househ	old total	
			washing industry	al	ry	total	g		y total	olu	olu	total	
Directly	Surface												
obtained	water												
from the	groundwater												
environment	total												
Obtained	Running												
from other	water												
economies	Running												
	water supply												
	Sewage												
	treatment												
	back to the												
	dosage	_											

Waste water			
total			
Total water use			
In which: fresh water use			

We can put the total water use data in the input-output table below, then construct water use input-output table.

		I	ntermediate	uses	Fin	al uses			
Input	output	Agricultu re		Public administratio n and social organizations	Final consum ption	capita 1 forma tion	Exp ort	Impo rt	gros s outp ut
Interm ediate input	Agriculture administration and social organizations Total		I x _{ij}			II Y _i			X _i
Value added	Compensation of employees Other net taxes on production Consumption of fixed capital Operating surplus Total		III N_{ij}						
grossl inputs			<i>X</i> _{<i>j</i>}						

Table 2. water use mout-output table	Table 2:	water	use in	put-out	put table
--------------------------------------	----------	-------	--------	---------	-----------

According to the water use table, we can analyze the water use data, From figure 9 we can see, in the total water use, agriculture is the largest water user, household water use is the second largest.

Figure 9: total water use Constitute structure

3.2 incorporating household sector into input-output analytical framework

Taking into account the household water use accounts for so large a proportion, we should incorporate household sector into input-output analytical framework. I researched the compilation method of household production account, household satellite account, and household production and consumption accounting theory, first defined production boundary, here we view household as producers. Then we use household survey data of Beijing, calculated the household immediate consumption, and fixed capital consumption, value of labor input.

		Household production boundary							
	SNA produ	ction	Non-SNA production						
Market	Hous	ehold production for own	use	Volunteer					
production	Housing	Own account	Other services	production					
	services production (good		produced for						
	produced by	particular, own	own						
	owner	account	use						
	occupiers	construction of							
		dwellings							

Table 3: Scope of the household production

Table 3 is the household production boundary, it include SNA production and non-SNA production, so we need extract housing service produced by owner

occupiers and own account production from SNA account, that is from input-output table, put it in a separate household column and we also need to calculate other service produced for own use and volunteer production put into household column.

We calculate data and extract data put into the household column, the household row data are all zero, this is because the output of household sector are all used for final consumption, the calculate value of labor input set in the compensations of employees, and the fixed capital consumption set this place. Gross output of household equals to final consumption.

Out	put	Inte	ermediate u	ises	F	inal uses		im	Gros
					Fina	Capita	expo	ро	S
		Agricult		Househo	1	1	rt	rt	outp
	\mathbf{X}	ure		ld	cons	forma			ut
					ump	tion			
Input					tion				
Inter	Agriculture								
media	:								
innuts	Household								
mputs	Total								
Value	Compensation								
added	of								
	employees								
	Other net taxes								
	on production								
	Consumption								
	of fixed capital								
	Operating								
	surplus								
	Total								
Gross in	nputs								
Water u	ise								

Table 4: improved water use input-output table

4. Water resource input-output for each sector in Beijing

4.1 Method of input-output analysis of water resource

Input-output mathematical model is:

 $X = \left(I - A\right)^{-1} Y$

Introduce sector j water quota (direct water use coefficient)^W, and then total

water consumption can be represented by:

 $W = wX = w(I - A)^{-1}Y$

(1) Calculation method for water use coefficient

① Direct water use coefficient

The direct water use coefficient w_i formula is:

$$w_j = \frac{W_j}{X_j}$$

 W_j is the water consumption for sector j, X _j is the total output for sector j.

⁽²⁾Total water use coefficient

$$\overline{w} = w(I - \hat{a}A)^{-1}$$

 \hat{a} is a diagonal matrix, the diagonal elements is $1 - \frac{import}{tatal \ output + import}$

③value-added water use coefficient

$$w_j^N = \frac{W_j}{N_j}$$

 W_i is water use of sector j, N_i is represented the value added of sector j.

(4) Water use multiplier

$$MW_j = \frac{\overline{w}_j}{w_j}$$

The row vector is expressed as $MW = (MW_1, MW_2, ..., MW_n)$.

(2)Water use level evaluation standard

1)Relative water use coefficient

$$Rw_{j}^{X} = \frac{w_{j}^{X}}{w_{o}^{X}}$$
$$Rw_{j}^{N} = \frac{w_{j}^{N}}{w_{o}^{N}}$$

v

 Rw_j^X and Rw_j^N are respectively represent relative water use coefficient for total output and value-added of sector j.

$$w_o^X = rac{\sum\limits_{j=1}^n W_j}{\sum\limits_{j=1}^n X_j}$$
, $w_o^N = rac{\sum\limits_{j=1}^n W_j}{\sum\limits_{j=1}^n N_j}$

⁽²⁾Relative water use multiplier

$$RMW_{j} = \frac{MW_{j}'}{\left(\sum_{j=1}^{n} MW_{j}' / n\right)}$$

 MW_j is water use multiplier of sector j.

③Relative water structure coefficients

$$RS_{j} = \frac{W_{j}/W_{0}}{\sum_{j=1}^{n} (W_{j}/W_{0})/n}$$

 W_0 is the total water use for all sectors, $W_0 = \sum_{j=1}^n W_j$.

(2)Water use level evaluation standards

- A. water use level—high: $Rw_j^N \ge 1$ or $RS_j \ge 1$;
- B. water use level—low: $Rw_j^N \prec 1$ or $RS_j \prec 1$
- C. potential water use level—high: $RMW_i \ge 1$
- D. potential water use level—low: $RMW_j \prec 1$

4.2 Empirical Analysis

According to the water use coefficient formula listed in above, we calculated 43 sectors water use coefficient.

	JØ						
	Direct	Value-added	Total water	Indirect	Water use		
	water use	water use	use	water	multiplier		
	coefficient	coefficient	coefficient	use			
agriculture	455.46	1220.97	554.12	98.66	1.22		
coal mining and							
washing industry	2.17	10.79	7.46	5.29	3.44		
oil and natural gas							
mining industry	0.23	0.44	3.13	2.90	13.61		
metal mining							
industry	40.80	76.05	47.06	6.26	1.15		

non-metal ore and					
other mineral					
mining industry	19.25	74.43	28.04	8.79	1.46
food manufacturing					
and tobacco					
processing	9.01	38.91	88.30	79.29	9.80
textile industry	6.30	21.01	23.87	17.57	3.79
textile clothing,					
shoes and hats,					
leather, fur feather					
and its products					
industry	2.80	7.33	7.67	4.87	2.74
wood processing					
and furniture					
manufacturing					
industry	2.47	13.10	13.28	10.81	5.38
paper printing ,					
cultural and					
educational sporting					
goods manufacturers	4.69	18.37	13.01	8.32	2.77
oil processing and					
coking and nuclear					
fuel processing					
industry	10.38	197.88	14.16	3.78	1.36
chemical industry	5.83	16.32	22.43	16.60	3.85
non-metallic mineral					
products industry	8.19	41.38	15.83	7.64	1.93
metal smelting and					
rolling processing					
industry	22.61	121.62	30.71	8.10	1.36
fabricated metal					
products industry	2.05	11.42	10.68	8.63	5.21
general specialized					
equipment					
manufacturing					
industry	1.74	6.13	8.45	6.71	4.86
transportation					
equipment					
manufacturing					
industry	1.66	8.37	6.84	5.18	4.12
electrical machinery					
and equipment					
manufacturing	* ^ *	4.0-			- 00
Industry	1.01	4.25	7.07	6.06	7.00

communication					
equipment computer					
and other electronic					
equipment					
manufacturing					
industry	0.70	5.00	4.88	4.18	6.97
instrumentation and					
cultural office use					
machinerv					
manufacturing	0.71	2.66	4.98	4.27	7.01
art ware and other					
manufacturing					
industries	3.01	15 67	11 14	8 13	3 70
scran waste	1 23	5.85	8 10	6.87	6 59
electric heating	1.25	5.05	0.10	0.07	0.57
nower production					
and supply of					
and suppry of	22.71	90.65	52 15	20.44	2.24
industry	22.71	80.03	55.15	30.44	2.54
gas production and	4 70	5.90	7 5 5	2.95	1.61
supply industry	4.70	5.89	1.55	2.85	1.01
the production and					
supply of water					
possession	754.90	2693.62	768.33	13.43	1.02
building industry	3.79	15.42	12.14	8.35	3.20
transportation and					
warehousing	2.21	5.70	7.92	5.71	3.58
postal service	2.36	4.19	7.41	5.05	3.14
information					
transmission					
computer, services					
and software	0.27	0.69	3.84	3.57	14.22
wholesale and retail	1.62	2.85	6.45	4.83	3.98
accommodation and					
catering	11.41	25.01	41.24	29.83	3.61
financial industry	0.41	0.59	4.23	3.82	10.34
real estate industry	7.09	10.16	13.08	5.99	1.84
lease and business					
services	2.12	6.33	12.99	10.87	6.13
research and					
experimental					
development					
industry	3.25	10.52	15.86	12.61	4.88
comprehensive					
technical services	0.68	2.41	7.32	6.64	10.76

water conservancy environment and					
public facilities					
management	71.48	159.15	97.46	25.98	1.36
residents service and					
other services	2.75	8.96	15.44	12.69	5.61
education	17.64	33.04	30.92	13.28	1.75
health social security					
and social welfare	4.27	13.28	13.37	9.10	3.13
culture, sports and					
entertainment	5.07	12.44	14.09	9.02	2.78
public					
1					
administration and					
social organizations	5.61	11.76	14.81	9.20	2.64
Household sector	54.76	84.95	91.75	36.99	1.67
Household sector	54.76	84.95	91.75	36.99	1.67

From table 5, we can see: agriculture, electric heating power production and supply, etc. those sectors direct water use coefficient and value-added water use coefficient are high.

Agriculture, food manufacturing and tobacco processing, electric heating power production and supply, Accommodation and catering, etc. those sectors indirect water use are high.

Agriculture, food manufacturing and tobacco processing, electric heating power production and supply, accommodation and catering, etc. those sectors total water use coefficient are high.

Table 0.	water use lev	er for each se	ector of beijing in	2007	
	Rw_j^N	RS_{j}	RMW_{j}	Water use	Potential water
				level	use level
agriculture	37.499	15.371	0.278	high	low
coal mining and					
washing industry	0.331	0.033	0.783	low	low
oil and natural gas					
mining industry	0.014	0.001	3.098	low	high
metal mining					
industry	2.336	0.050	0.262	high	low
non-metal ore and					
other mineral					
mining industry	2.286	0.009	0.332	high	low

Table 6: water use level for each sector of Beijing in 2007

food manufacturing					
and tobacco					
processing	1.195	0.591	2.231	high	high
textile industry	0.645	0.057	0.863	low	low
textile clothing,					
shoes and hats,					
leather, fur feather					
and its products					
industry	0.225	0.041	0.624	low	low
wood processing					
and furniture					
manufacturing					
industry	0.402	0.021	1.225	low	high
paper printing ,					
cultural and					
educational sporting					
goods					
manufacturers	0.564	0.120	0.631	low	low
oil processing and					
coking and nuclear					
fuel processing					
industry	6.077	0.481	0.310	high	low
chemical industry	0.501	0.683	0.876	low	low
non-metallic					
mineral products					
industry	1.271	0.292	0.439	high	low
metal smelting and				-	
rolling processing					
industry	3.735	1.487	0.310	high	low
fabricated metal				e	
products industry	0.351	0.056	1.186	low	high
general specialized					U
equipment					
manufacturing					
industry	0.188	0.185	1.106	low	high
transportation					U
equipment					
manufacturing					
industry	0.257	0.208	0.938	low	low
electrical machinery					
and equipment					
manufacturing					
industry	0.131	0.041	1.593	low	high
communication	0.154	0.213	1.587	low	high
industry communication	0.131 0.154	0.041 0.213	1.593 1.587	low low	high high

equipment computer					
and other electronic					
equipment					
manufacturing					
industry					
instrumentation and					
cultural office use					
machinery					
manufacturing	0.082	0.019	1.596	low	high
art ware and other					-
manufacturing					
industries	0.481	0.020	0.842	low	low
scrap waste	0.180	0.001	1.500	low	high
electric heating					U
power production					
and supply of					
industry	2.477	2.514	0.533	high	low
gas production and					
supply industry	0.181	0.015	0.366	low	low
the production and					
supply of water					
possession	82.728	3.188	0.232	high	low
building industry	0.474	1.005	0.728	high	low
transportation and					
warehousing	0.175	0.391	0.815	low	low
postal service	0.129	0.023	0.715	low	low
information					
transmission					
computer, services					
and software	0.021	0.080	3.237	low	high
wholesale and retail	0.088	0.313	0.906	low	low
accommodation and					
catering	0.768	1.001	0.822	high	low
financial industry	0.018	0.096	2.354	low	high
real estate industry	0.312	1.048	0.419	high	low
lease and business					
services	0.194	0.346	1.395	low	high
research and					
experimental					
development					
industry	0.323	0.220	1.111	low	high
comprehensive					
technical services	0.074	0.144	2.449	low	high
water conservancy	4.888	1.341	0.310	high	low

environment and					
public facilities					
management					
residents service and					
other services	0.275	0.062	1.277	low	high
education	1.015	1.348	0.398	high	low
health social					
security and social					
welfare	0.408	0.328	0.712	low	low
culture, sports and					
entertainment	0.382	0.350	0.633	low	low
public					
administration and					
social organizations	0.361	0.491	0.601	low	low
Household sector	2.609	8.837	0.380	high	low

According to the above calculation, we can divide 43 sectors into several types, in the row; we divided into three categories.

Table 7: divide 43	sectors into	several types
--------------------	--------------	---------------

	water use(high)	water use(low)	water use(low)	
		potential water use	potential water use	
		(low)	(high)	
Value	real estate industry,	Wholesale and retail,	Financial industry,	
added	building industry,	transportation and	information	
(high)	education,	warehousing, chemical	transmission computer	
	accommodation	industry, public	services and software,	
	and catering,	administration and social	Comprehensive	
	electric heating	organizations	technical services,	
	power production		Lease and business	
	and supply of		services,	
	industry, household		Communication	
			equipment computer	
			and other electronic	
			equipment	
			manufacturing industry	
Value	Food	Culture, sports and	General specialized	
added	manufacturing and	entertainment,	equipment	

(medium)	tobacco processing,	Transportation	manufacturing industry,	
	agriculture, metal	equipment	Research and	
	smelting and	manufacturing industry,	experimental	
	rolling processing	Health social security	development industry,	
	industry, water	and social welfare, Paper	electrical machinery	
	conservancy	printing , cultural and	and equipment	
	environment and	educational sporting	manufacturing industry,	
	public facilities	goods manufacturers	Residents service and	
	management,		other services,	
	non-metallic		instrumentation and	
	mineral products		cultural office use	
	industry		machinery	
			manufacturing	
Value	The production and	Textile clothing, shoes	Fabricated metal	
added	supply of water	and hats, leather, fur	products industry, oil	
(low)	possession, oil	feather and its products	and natural gas mining	
	processing and	industry, postal service,	industry, wood	
	coking and nuclear	coal mining and washing	processing and furniture	
	fuel processing	industry, textile industry,	manufacturing industry,	
	industry,	gas production and	Scrap waste	
	metal mining	supply industry, art ware		
	industry,	and other manufacturing		
	Non-metal ore and	industries		

5. Conclusions and suggestions

mining industry

other

mineral

5.1 Conclusions

The main conclusions drawing from descriptive statistical analysis are: the average precipitation, surface water resource and total water volume during 1986 to 2008 was in decline, the situation of underground water were deteriorating, which results in serious shortage of water resources supply. However, with the expansion of urban economic activity and population, there is a clear decline trend for total water consumption of Beijing, which is the result of substantial decline of economic output

per unit and water consumption per capital. It shows that remarkable achievements have been made in water saving and water use efficiency improving in Beijing.

Based on the water resource input-output table, through the analysis of each sector's efficiency of water use in Beijing, we can divide various economic sectors into four categories: the first category is these sectors that economic contributions were high, but their water use levels were also high. Real estate, construction, education, accommodation and catering industry, electricity and heat production and supply belonged to this category, their economic scales were important to the economic development in Beijing, but their water use levels were high. In the future, during the water resources management process, we should pay attention to these sectors. The second category is these sectors that economic contributions were high, water use levels were low. Wholesale and retail trade, transportation and warehousing sector, public sector management and social organization belonged to these types. These sector's economic scales were important to Beijing, and water levels were very low, these sectors development won't pose pressure on water resource. In the future, these sectors should be encouraged. The third category is those sectors that economic contributions were high, and their potential water use levels were also high. Financial industry, information transmission and computer services and software. comprehensive technical services, leasing and business services, communications equipment, computers and other electronic equipment manufacturing belonged to this type, their economic development were very important to Beijing, but their development will lead to water consumption increase rapidly in economic system. Therefore, in the process of pursuit economic development, we should pay attention to reducing their water use. The fourth category is those sectors that economic contributions were small, but water use levels were very high. Agriculture sector belonged to this type; it was the most typical sector. In the future, its water use efficiency need to improve and its water use level need to reduce. In addition, household sector belongs to high water use sector, its water use efficiency need to improve, and use water in a saving way.

5.2 Suggestions

To ensure the sustainable development of water resources in Beijing, we should pay attention to the following aspects in the process of improving the situation of water resources:

Firstly, we should strengthen the integrated water resources management, and

establish water-saving economic system. Secondly, we need to improve the industrial technology level, improve water-saving industrial structure, and reduce the water consumption of existing industrial. Thirdly, the water use efficiency of agricultural still need to be improved, we should promote water-saving agriculture, strengthen basic work of agriculture water-saving, achieve water-saving irrigation for all farmland, focus on the promotion of slight spraying, drip irrigation and other high efficient water-saving irrigation technique.

Reference:

[1]Esther Vela´zquez, 2005. An input–output model of water consumption: Analyzing inter-sector water relationships in Andalusia. Ecological Economics 56 (2006) 226–240.

[2] Antonio Baigorri, Household Production and consumption: Proposal for a Methodology of Household Satellite Accounts, Luxembourg: Office for Official Publications of the European Communities, 2003.

[3] Duncan Ironmonger. Household Production and the Household Economy, DEPARTMENT OF ECONOMICS Research Paper, 2001, 1~14.

[41]James E. Pratt, The Regional Economic Value of Non-market Household Production Time: Combining an I-O Framework with Time Use Data, Regional Analysis Policy, 2009(1), 86~88.