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Introduction

The word prion was coined by Nobel laureate Stanley Prusiner to describe the infectious agent
in a group of fatal neurodegenerative diseases that includes scrapie in sheep, bovine spongiform en-
cephalopathy (BSE) in cattle and variant Creutzfeldt-Jakob disease (vCJD) in humans. The infectious
agent is a misfolded form of the protein, PrP, denoted PrPSc, which forms polymers that grow by
recruiting molecules of the normal cellular form of the protein, PrPC. Once attached to the PrPSc

complex, the PrPC molecule refolds into the prion conformation.
A key property of prions is their ability to self-replicate, through a process known as nucleated

polymerization. Nucleation refers to the fact that the minimal stable unit of PrPSc is a ‘nucleus’ or
‘seed’ consisting of several molecules. Very occasionally, such seeds can arise spontaneously; alterna-
tively they are inherited or result from infection through eating meat from an infected animal. The
seeds grow by polymerization and the polymers can subsequently fragment into two parts. Each frag-
ment then acts as a separate seed, provided it is larger than the minimum stable size. This combination
of growth and fragmentation provides the mechanism of replication.

Yeast prions are a group of proteins in the budding yeast Saccharomyces cerevisiae that, though
functionally unrelated to PrP, also self-replicate through nucleated polymerization and can be inherited
through cell division. However, yeast prions are not associated with disease in S. cerevisiae. Tuite
and Serio (2010) provide a recent overview of the biology.

One widely-studied yeast prion is [PSI+], a prion form of the essential yeast-cell protein Sup35p.
Sup35p is involved in ensuring that the translation of RNA transcripts into protein molecules termi-
nates correctly. Normally it occurs as a soluble monomer (single molecule), but there is also a polymeric
prion form that is insoluble. Yeast cells in which all the Sup35p is in the normal form are termed
[psi−] whereas those that contain some Sup35p in the prion form are termed [PSI+]. A colour assay
is available to distinguish the two types of cell.

This paper gives an overview of a long-running collaboration between bioscientists and statisti-
cians at the University of Kent, studying [PSI+]. We adopt a chronological approach, showing how
initial phenomenological models have been refined progressively both to incorporate greater biological
realism and to probe deeper into the underlying mechanisms. We begin by describing [PSI+] cur-
ing by the chemical guanidine hydrochloride (GdnHCl), which has been an important experimental
technique for understanding [PSI+], and outline the stochastic models that we have developed to
describe curing data. We then look at mathematical models of nucleated polymerization and conclude
by outlining current and future areas of work.

GdnHCl-induced curing of the [PSI+] prion

If GdnHCl is added at low concentrations to the growth medium of a culture of [PSI+] yeast
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cells, the proportion of [PSI+] cells decreases gradually to zero over time, after an initial lag period
where no effect is observable (Fig. 1). This is termed curing and occurs because GdnHCl inhibits
replication of the prion polymers, which are then diluted through cell division until [psi−] cells with
no polymers appear (Byrne et al., 2007).

Figure 1. Curing data for the yeast strain YJW512. The fitted curve is based on the
improved model of GdnHCl-induced prion curing described below.
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Curing data are obtained by extracting samples of cells at various times after GdnHCl addition
and determining the number of cells that are [PSI+]. A reasonable starting point to model the
data is to treat the number of [PSI+] cells at time t as binomial, with index equal to the number
of cells sampled and with probability p+(t), say. In practice, replicate data sometimes show mild
overdispersion relative to the binomial distribution.

Our initial work on yeast prions was concerned with deriving expressions for the function p+(t),
which depends on the mean number of polymers per cell present initially, n0, and on the rate of cell
division. The experimental data can then be used to estimate these parameters; the parameter of
most interest biologically is n0. We outline two different models. The first contains the essential ideas,
but assumes that cells divide symmetrically. The second incorporates a more realistic model of yeast
cell division. To describe the models, we introduce two related terms. The generation time of a cell
is the time from when the cell is generated, through a cell division event, until it too divides. The
generation number of a cell at time t is the number of cell divisions that have occurred in the ancestry
of this cell since time t = 0. Thus, cells present at the start of the experiment have generation number
0, these divide to give cells of generation number 1, and so on.

An initial model of GdnHCl-induced prion curing

Morgan et al. (2003) assume (i) that the number of polymers per cell at the outset is Poisson(n0),
(ii) that this number is fixed when GdnHCl is added, (iii) that at cell division the polymers are divided
independently and randomly between the two daughter cells and (iv) that the generation times of the
cells are i.i.d. random variables. This latter assumption implies that the cell population grows as an
age-dependent branching process.

Suppose that, at time t, we pick a cell at random from the population and that its generation time
is G(t). It follows from the assumptions that the number of prions in the cell is Poisson

{
n02−G(t)

}
,
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and the probability that the cell is [PSI+] is therefore

p+ {t|G(t) = g} = 1− exp
{
−n02−g

}
.(1)

To obtain the unconditional probability p+(t), we require the distribution of G(t). Suppose we
pick a cell at random at the start of the experiment and follow a random path through its descendants
until time t; each time there is a cell division, we choose randomly between the two offspring cells,
arriving finally at a particular cell at time t. Let H(t) denote the generation number of this cell.
This has a different distribution to G(t) because the sampling protocol for arriving at the chosen cell
is different. The distribution of H(t) is available in terms of the generation-time distribution, using
standard results in renewal theory. We then have the approximation

Pr {G(t) = g} = 2gPr {H(t) = g}∑∞
h=0 2hPr {H(t) = h}

,(2)

which is the expected number of cells of generation g at time t divided by the expected total number
of cells at time t. Morgan et al. (2003) fitted this model to several sets of curing data, assuming that
cell division times follow a gamma distribution with known coefficient of variation. This provided
estimates of n0 and also of the mean cell generation time. Estimates of the latter parameter were
shown to be in good agreement with estimates based on a different experimental technique.

Better models of yeast cell division

In reality, S. cerevisiae reproduces not by simple symmetric division, but by an asymmetric
budding process. A small bud appears on a mother cell which grows until it is about two thirds of the
size of the mother cell before separating from the mother. A mother cell can produce numerous buds
in succession in this way until eventually the cell dies. The new daughter cell also produces buds in
due course, but the first bud takes longer to produce than subsequent buds.

Green (1981) proposed a model for yeast cell division in which a mother cell takes time WM to
generate a bud to the point where it separates from the mother. The corresponding time for a newly
generated daughter cell to produce its own offspring isWD+WM , whereWD represents the additional
time that a daughter cell requires to mature to the point where it is similar to a mother cell. Different
cells have independent realisations of the random variables WD and WM .

This is a generalisation of the age-dependent branching process. Green showed that, asymp-
totically, the population grows exponentially at rate ϕ, where ϕ, which is termed the Malthusian
parameter, is the unique solution to the equation

[1 + E {exp(−ϕWD)}] E {exp(−ϕWM )} = 1.

Ridout et al. (2006) gave accurate approximations for ϕ based on just the first two moments of the
distributions of WM and WD. Cole et al. (2007) provided similar approximations to the expected
generation number of a randomly chosen cell. The parameter ϕ also determines the proportion of
daughter cells in the population asymptotically, which is

PD = E {exp(−ϕWM )} .

An improved model of GdnHCl-induced prion curing

Cole et al. (2004) extended the initial model of curing to allow for the asymmetrical budding
process, by introducing an additional parameter π to represent the probability that a given prion
polymer is passed from the mother cell to the daughter cell during budding; the earlier model assumed
π = 1/2.
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We can again consider a cell chosen at random from the population at time t, but now need to
take into account not just the generation number of the cell, G(t), but also the number of ancestors of
the current cell that were daughter cells, which we denote by D(t). The conditional probability that
the cell is [PSI+] is then

p+ {t|G(t) = g,D(t) = d} = 1− exp
{
−n0π

d(1− π)d
}
.

To obtain the marginal probability p+(t), we need to sum over the joint distribution of G(t) and
D(t). The model does not consider cell death, but this is reasonable because most cells in a dividing
population are ‘young’; Cole et al. (2004) provided simulation evidence to support this conclusion.

The new model was fitted to the same data as in Morgan et al. (2003). This required assumptions
about the distributions of WM and WD, which were taken to be Gamma(αM , β) and Gamma(αD, β),
respectively. Choosing a common value of β means that WM +WD also has a gamma distribution.
The main parameters of interest are not those of the distributions of WM and WD but n0, the mean
number of polymers at t = 0, as before, and π, the probability that a polymer is transmitted to the
daughter cell. It is not practical to estimate all of the model parameters from curing data alone and
supplementary cell growth data were used to estimate the parameters of the distributions of WM and
WD.

Calculation of p+(t) requires the numerical evaluation of various integrals involving the densi-
ties of WM and WD. Ridout (2008) shows that p+(t) can be calculated efficiently using numerical
Laplace transform inversion, for any distributions of WM and WD for which the Laplace transforms
are available; the distributions need not be from the same family (Palmer et al., 2008).

The analyses that we have described so far provide estimates of the mean number of polymers
present in a cell, n0. An alternative experimental approach, proposed by Cox et al. (2003), is to isolate
a single cell onto medium containing GdnHCl and let this cell reproduce. Because of the dilution of the
prion polymers present in the parent cell through its subsequent descendants, eventually each of the
descendants will either be [psi−] or will be [PSI+] but will contain only a single polymer. Therefore,
at this point, the number of polymers present in the single initial cell can be determined simply by
counting the number of [PSI+] cells amongst the descendants. Whilst this technique is laborious and
has some experimental limitations, it does provide valuable additional data. Moreover, it is possible
to separate mother-daughter pairs to determine the numbers of prion polymers that they contain,
providing direct information about the transmission of polymers from mothers to daughters.

To gain further biological insight we need to consider what is occurring within an individual cell.
We therefore turn our attention to mathematical models of the process of nucleated polymerization.

Models of nucleated polymerization

The prevailing model of prion aggregates, which is described by Masel et al. (1999), treats the
aggregates as one-dimensional linear fibrils. This does not imply that the polymers are strictly one-
dimensional at the microscopic level – for example, they may have a helical structure – but they
are ‘macroscopically linear’. The model is deterministic and describes the system at time t by the
number of monomers, x(t), and the number of polymers of length i, yi(t); monomers are normal
protein molecules whereas polymers are in the prion form. We also introduce two further variables,
y(t) =

∑
yi(t) and z(t) =

∑
iyi(t). Thus y(t) is the total number of polymers and z(t) is the total

number of protein molecules that are in polymers, or equivalently, the total length of the polymers.
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Five types of reaction are considered:

1. Production of a new monomer, which occurs at rate αµM min−1.

2. Binding of a monomer to a polymer of length i. The monomer is converted to the prion
form and therefore gives a prion polymer of length i+ 1. For each polymer, this occurs at a rate
βx(t), where the units of β are µM min−1; the overall rate is βx(t)y(t). This is the rate that is
expected if monomers and polymers mix homogeneously, for example by diffusing freely within
the cell, and if the rate of binding to a polymer is independent to its length. There has been
debate in the literature about whether monomers can bind at both ends of a polymer or only
one; however, β simply reflects the overall rate of binding, however this occurs.

3. Splitting of a polymer. A linear polymer of length i has i − 1 bonds and the breakage rate
per bond is assumed to be γmin−1. There appears to be a minimum polymer length, n, that is
needed for stability and it is assumed that if polymer splitting leaves a fragment of length less
than n, then this disintegrates instantaneously into (non-prion) monomers. Hence, yi(t) = 0 for
i < n. The value of n is not known precisely, but is usually taken to be in the range 2− 6.

4. Degradation (‘death’) of a monomer, which occurs at rate λmonmin−1 per monomer.

5. Degradation (‘death’) of a polymer, which is assumed to occur at rate λpolmin−1 per
polymer, independently of polymer length. Since polymers are assumed to be more stable than
monomers, one expects λpol ≪ λmon.

The evolution of the system over time is described by a system of differential equations:

dx
dt

= α− λmonx− βxy + 2γ
n−1∑
i=1

∞∑
j=i+1

iyj(3)

dyi
dt

= βx (yi−1 − yi)− λpolyi − γ(i− 1)yi + 2γ
∞∑
j=i+1

yj (i ≥ n)(4)

Summing these equations leads to a closed system of equations for x, y and z,

dx
dt

= α− λmonx− βxy + n(n− 1)γy

dy
dt

= γz − λpoly − (2n− 1)γy

dz
dt

= βxy − λpolz − n(n− 1)γy

Setting the right hand sides of these equations to zero reveals that there are two steady-state solu-
tions. When the system is started from any other state, it converges to one or other of these steady
states as t → ∞, depending on whether a particular function of the rate parameters is above or be-
low a threshold value, similarly to many epidemic models (Greer et al., 2006). One steady state is
{x(t) = α/λ, y(t) = 0, z(t) = 0}, which corresponds to the prion-free state; in the other steady state
there are prion polymers as well as (non-prion) monomers.

In fact, in common with a number of other recent papers, Greer et al. (2006) consider a slightly
different form of the model in which polymer length is treated as a continuous rather than a discrete
variable. This simplifies the mathematical analysis of the model. In particular, the infinite set of
differential equations (4) is replaced by a single partial integro-differential equation and Greer et
al. (2006) give an explicit expression for the steady-state distribution of the number of polymers of
different lengths when the steady state includes prions.
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In their model, the mean polymer length in equilibrium is given by µ = λpol/γ + 2n0. If
we let U(> n0) denote polymer length, then it can be shown from their results that the variable
V = (U − n0)/(µ− n0) + 1 has the (fixed) probability density function

fV (v) = (v2 − 1)e(v2−1)/2 v ≥ 1.

Thus, the steady-state distribution of polymer length is determined entirely by its mean; the distri-
bution has coefficient of variation 0.5580 and skewness 0.7589.

Similar models have been considered for yeast by Tanaka et al. (2006), Derdowski et al. (2010)
and Palmer et al. (2011), all of whom also consider stochastic formulations of the model. Yeast
models have to take account of the fact that the cells are growing, which affects the reaction rates.
Palmer et al. (2011) consider a stochastic version of the model based on the five types of reaction
listed above, with random variables X, Y and Z in place of x, y and z. The cell volume is modelled
as V (t) = V (0) exp(Rt), where R is the relative cell growth rate. Following Wilkinson (2006, pp.
156–157), the rate parameters α and β are replaced by time-dependent rates αg(t) = αA1V (t) and
βg(t) = β/[A1V (t)], respectively, where A1 = 6.0221 × 10−17 is the number of molecules in 1µM.
The increasing rate αg(t) ensures that the cell maintains the same total concentration of protein
molecules as it enlarges. Similarly, the rate βg(t) decreases to reflect the fact that, for a given number
of monomers and polymers, molecular collisions occur less frequently in a larger cell than a smaller
cell. Ideally, the size-dependence of the rates would be verified experimentally, though this has not
been possible to date.

Starting from the Kolmogorov forward equations, Palmer (2009, Section 3.2) derives a partial
differential equation for the joint probability generating function of (X,Yn, Yn+1, . . .). Although this is
rather unwieldy, if one makes the standard simplifying assumption that E(XYi) = E(X)E(Yi), a set of
three differential equations for E(X), E(Y ) and E(Z) can be derived that are identical to the equations
for x, y and z, except that the constants α and β are replaced by αg(t) and βg(t), respectively. If
degradation is ignored (i.e. λmon = λpol = 0), the threshold condition for the stable existence of the
[PSI+] state is

αβγ > R(R+ nγ) [R+ (n− 1)γ](5)

and the limiting mean polymer length as t→∞ is approximately R/γ+2n−1. The lack of dependence
of mean polymer length on the monomer-to-polymer binding rate β is perhaps surprising at first sight,
but is due to the fact that γ is the breakage rate per polymer bond, not per polymer. Thus, with larger
β, monomers will bind to polymers more frequently, but polymers will also split more frequently.

Extension to asymmetrically dividing cells

The results discussed so far describe what occurs in a single cell that grows indefinitely. With
minor modification, they also describe what occurs in a population of dividing cells provided that
the cells divide symmetrically and that the population of monomers and polymers is shared equally
between the two offspring cells. However, as already discussed, yeast cells divide asymmetrically, with
daughter cells being smaller and taking longer to divide subsequently than mother cells. Additionally,
there is experimental evidence (e.g. Sindi & Serio, 2009) that it is more difficult for long polymers to
be transmitted to the daughter cell than short polymers.

Suppose that generation times for mother and daughter cells are fixed with values tM and
tD = tM + td, where td is the additional time needed for a daughter cell to reach maturity. Let VM (t)
denote the volume of a mother cell measured at time t since the start of its cell cycle and VD(t) denote
the corresponding volume of a daughter cell. Palmer et al. (2011) assume that growth of the mother
cell is purely due to the growth of the bud, so that

VM (tM ) = VM (0) + VD(0).
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Also, at the time the bud separates from the mother, a proportion θ of the total volume accrues to
the daughter, i.e. VD(0) = θVM (tM ) and VM (0) = (1− θ)VM (tM ).

The probability of transmission of a polymer from mother cell to daughter cell is modelled as a
decreasing logistic function of the length of the polymer, w,

ξ(w) = θ

1 + exp [ρ1(w − ρ2)]
,(6)

where ρ1 determines the rate of decrease and ρ2 is the length at which the probability of transmission
is reduced to θ/2. The parameters are chosen so that there is little effect of polymer length for the
range of polymer lengths that typically occurs under natural conditions, though this function becomes
important when modelling experiments involving GdnHCl. Independently, Dewdowski et al. (2010)
proposed a similar model, but assuming an abrupt transition from transmission to non-transmission,
equivalent to taking the limit ρ1 →∞.

Palmer et al. (2011) show that in specific examples, approximations to the mean number of
monomers, the mean number of polymers and the mean polymer length still apply after being adjusted
to take account of the values of θ, tM and tD. Simulation was used to incorporate variable generation
times. This involved simulating the five basic reaction types, using the algorithm of Gibson and Bruck
(2000), a variant of the standard Gillespie algorithm for simulating biochemical reactions that reduces
the quantity of random numbers that need to be generated.

Application to modelling the results of experiments involving GdnHCl

The basic assumption of earlier models was that the addition of GdnHCl to the culture medium
prevented replication of the prion. In terms of the nucleated polymerization model, this entails setting
the parameter γ to zero. In fact, when other parameters are held fixed, the inequality that must be
satisfied for existence of a stable [PSI+] population (equation 5) is quadratic in γ and a population
that is initially [PSI+] will revert to [psi−] if γ is either below a lower threshold or above an upper
threshold. We consider the upper threshold later, but the existence of a lower threshold that is larger
than zero implies that it is not necessary for GdnHCl to block prion replication completely to cause
curing, provided that γ is reduced to a value below the threshold.

A decrease in γ results in an increase in mean polymer length, as observed experimentally.
This makes it increasingly difficult for polymers to be transmitted to the daughter cell, according to
equation (6), also in qualitative agreement with experimental data (e.g. Cox et al., 2003). In contrast
to the model of Cole et al. (2004), where the expected proportion of polymers that is transmitted to
the daughter cell, π, is assumed to be constant, the current model predicts that this proportion should
decrease with time, as polymers become longer; this should be testable using the polymer counting
technique of Cox et al. (2003) described earlier.

Transferring cells back to GdnHCl-free medium halts curing. This is consistent with the value of
γ being restored to its original value. Similarly, reintroducing cells into medium containing GdnHCl
reactivates curing at a rate that depends on the duration of the GdnHCl-free period (Cox et al.,
2003). Palmer et al. (2011) present results of simulations with changing values of γ that mimic these
experimental findings.

The role of chaperones

Molecular chaperones are proteins that ‘look after’ other proteins in various ways, for example by
assisting in protein folding. In yeast, the mechanism of [PSI+] polymer splitting involves a hexameric
(6-molecule) ring of the chaperone Hsp104, though other chaperones, including Hsp40 and Hsp70, are
also involved in ways that are not yet fully understood. Thus, in reality, the rate γ, which we have
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regarded hitherto as a fixed parameter, is in reality dependent on the concentration of Hsp104 in the
cell. It is known that GdnHCl binds to Hsp104, effectively inactivating the GdnHCl and leading to
the reduction in γ. Derdowski et al. (2010) extend the standard nucleated polymerization model to
include hexamers of Hsp104. In their model, the overall fragmentation rate, which is γ(Z − Y ) in the
standard model, becomes νH(Z − Y )/(H/2 +Z − Y ), where H is the number of Hsp104 hexamers in
the cell.

Interestingly, if yeast cells are modified genetically to over-express Hsp104, this also results in
[PSI+] curing and it is tempting to speculate that this is because the upper threshold value of γ for
stable existence of the [PSI+] phenotype has been breached, so that fragmentation occurs at such
a high rate that a polymer population cannot be maintained. However, the upper threshold value
turns out to be unrealistically large and the resulting curing curves do not match experimental data.
Therefore, the explanation of curing by Hsp104 over-expression appears to lie elsewhere.

Current and future work

Refining the model

A key scientific challenge is to disentangle the roles played by the different chaperones (Hsp40,
Hsp70, Hsp104) in determining the rate of polymer fragmentation which, as we have seen, is crucial to
prion kinetics and to maintenance of the [PSI+] state. A combined approach involving experimenta-
tion and modelling seems a promising way forward. Genetic manipulations can give cells with reduced
or elevated chaperone levels and we are developing experimental techniques that measure these levels.
On the modelling side, one of us (VG) has developed a C++ template library, called YeastSim++, which
provides simulation code for different kinetic schemes in a largely automated way, enabling different
possible modes of interaction between chaperones to be explored quickly and easily.

Other possible developments include the following. Firstly, our current models distinguish be-
tween mother cells and new daughter cells, but Derdowski et al. (2010) have suggested that it may
be important to take into account the replicative age of the mother, i.e. the number of daughter cells
that it has produced previously. Secondly, the models could be refined to take account of the fact that
protein production tends to occur in bursts rather than in the smooth fashion implied by differential
equation models; Paulsson (2005) reviews models in this area. Finally, novel imaging techniques are
enabling us to learn more about proteins within cells, for example to see whether they are localised in
particular cellular compartments and to track their movements. Early results with Sup35p constructs
suggest that movements may be more complex than simple random walks (Tsuji et al., 2011).

Statistical inference

Little has been said in this paper about statistical inference, but of course it is important to be
able to infer parameter values from experimental data. Morgan et al. (2003) and Cole et al. (2004)
used likelihood based methods, with explicit computation of the likelihood. This approach is unlikely
to be viable for more complex models based on intracellular kinetic and simulation-based methods,
such as Approximate Bayesian Computation, seem more promising (e.g. Wilkinson, 2011). Palmer
(2009, Chapter 4) considered a modification of the model of Cole et al. (2004) in which the parameter
π was treated as a decreasing function of time, in keeping with the predictions of the intracellular
model. However, the function was chosen empirically to introduce just one additional parameter into
the model. Simulation-based inference was attempted, but the broad conclusion was that there is
insufficient information in the curing data alone to allow the additional parameter to be estimated.

Thus, it appears that other sources of data will be needed, in conjunction with curing data,
to estimate parameters reliably, with associated issues of how best to combine data from different
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sources (Henderson et al., 2010). Currently, we are trying to obtain experimental data on polymer-
length distributions.

Faster simulation

Simulation of biochemical processes within cells is expensive computationally because large
numbers of events occur in short time periods. We are exploring two approaches to faster simulation,
one based in hardware and the other algorithmic. Although neither approach is novel, they need to
be adapted to be effective in simulating polymer growth and fragmentation.

The first approach uses graphics processing units (GPUs) to provide a cheap source of highly
parallel processing (Dematté & Prandi, 2010). A challenge here is to design algorithms that exploit
the combined computing power of the processors effectively whilst controlling the overheads of moving
data between processors. The second approach uses an approximate rather than an exact approach to
simulation. Exact simulation typically requires all hazard rates to be updated after each event occurs.
An alternative approach, known as tau-leaping, updates rates only after a time interval of length τ .
The challenge of this approach is to choose τ large enough to obtain a worthwhile improvement in
computational speed but not so large as to entail a substantial loss of quality in the simulated data.
This has been a very active area of research in recent years (e.g. Hu & Li, 2009).

Conclusions

We hope to have shown how stochastic modelling in this area has evolved as understanding of
yeast prion biology has increased. For statisticians, this type of project requires investment of time
and effort in becoming familiar with some of the underlying biology and its associated terminology,
but the payoff is a chance to work at the cutting edge of a fast-moving and topical area of bioscience
that presents challenging problems of both mathematical and statistical interest.
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