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Introduction

In the epidemiological literature, the short term effect of air pollution on the health of individuals

has been extensively studied using time series data, with particular regard to fine particles (Samet

et al. 2000a, Samoli et al. 2008). A typical approach considers the ambient measure of particulates

(e.g. PM10, PM2.5) at a set of locations as an approximation of the exposure of each individual in

the population under study, typically a city or a region. Considerable progress has been made in

interpolating pollution fields to get estimates at a higher spatial resolution (Gryparis et al., 2007)

so that an ambient pollution estimate is often available close to where individuals live. Nevertheless

in applying this estimate to quantify the exposure of individuals, the underlying assumption is that

people remain in the same place throughout the day and are only exposed to the ambient concentration

(equivalent to being outside all day). In reality, people move around indoor and outdoor environments,

characterized by different concentrations of pollutants and engage in behaviors (e.g. smoking, cooking)

that may also affect exposure.

Direct measures of personal exposure in individuals in a study can be obtained using a small

monitor attached to each participant (Williams, 2008) and complex statistical models have been

proposed to utilize such data.

Dominici et al., (2000) proposed a Bayesian meta-analytical framework using available data

on personal exposure from several studies, and infers the personal exposure distribution for an area

where such data are not available: (i) a general additive model is specified for the relationship between

mortality and the latent (unobserved) personal exposure; (ii) a linear regression model is specified for

the unobserved variable as a function of the ambient concentration, where the coefficients are given a

distribution obtained from a meta-analysis of available studies on personal exposure.

Recently, time activity diaries have become a popular tool to obtain information about individual

exposure: Jantunen et al., (2002) combined information from diaries and personal monitors to estimate

the individual exposure in the EXPOLIS study, but several approaches have been proposed where

only diaries are used to estimate the exposure at the individual level, when personal monitors are

not available or impractical to be used. In this framework, the most popular approach is based on

simulators: the environment is split in microenvironments (e.g. home, work, outdoor, etc.) that an

individual could visit during a typical day and that are characterized by different levels of air pollution;

the diaries are then used to simulate the activity patterns of a random individual in the population
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combined with pollutant concentrations of the microenvironments they visit, to obtain an estimate of

the personal exposure.

In this framework Burke et al., (2001) presented the Stochastic Human Exposure and Dose Sim-

ulator (SHEDS-PM), a statistical tool for estimating the population distribution of PM implemented

by combining the activity pattern of individuals, obtained from diaries, and repeated sampling from

the distribution of some input parameters. The SHEDS method specifies several microenvironments

and different functions of the ambient PM are used to obtain their concentration. Distributions are

assumed on all the function parameters and from these a distribution of exposure is estimated for each

individual using a Monte Carlo simulation approach.

More recently Zidek et al., (2007) and Shaddick et al., (2008) presented a two-step Bayesian model

that (i) estimates the individual exposure by combining diaries of activities and time spent in each

microenvironment and (ii) links the probability distribution of the individual exposure to the values of

the health outcome, which is available at an aggregated level, for strata of interest (e.g. defined with

respect to age groups, sex), in an ecological regression analysis. Holloman et al., (2004) proposed a hi-

erarchical exposure simulator, based on SHEDS, for estimating personal exposure, but adding the link

with cardiovascular mortality in North Carolina. Reich et al., (2008) extended this framework, using

a Bayesian model to link ultrafine PM10 distributions, obtained using SHEDS simulative approach, to

daily mortality. Activity patterns are incorporated into SHEDS framework and approximated output

distributions for exposure are then used in further models.

We follow the simulator approach but differently from the previous methods presented we model

directly time activity patterns in differing microenvironments at the strata level to estimate a distri-

bution of exposure for the population in each stratum. Our model is framed in a personal exposure

perspective as the inference target is the exposure of groups of individuals, but it avoids intensive

individual-based simulative processes and allows a simple and more transparent characterization of

variability of personal exposure in different subgroups. Working at the group level it is easy to evaluate

and compare different scenarios, for instance modifying the exposure for some groups as a result of

spending more or less time in some microenvironments, and to assess how these changes affect the risk

of disease (or death) for those groups, which would be cumbersome in an individual based simulator.

We use our model to evaluate through a realistic simulation study the impact on the relative risk

of mortality occurring when the ambient concentration is used instead of group exposure estimated

from time activity distribution.

Materials and Methods

Our model is illustrated using diaries from the Consolidated Human Activities Database (CHAD) and

PM10 data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS).

In overview, it is based on the following four steps

1. Strata are defined, choosing characteristics that affect activity (and therefore exposure)

patterns, e.g. sex, age, day of the week. Then, within a Bayesian hierarchical statistical model where

group exposures are treated as unknown quantities:

2. Time-activity diary data are used to inform the distribution of the probability of spending

time in each microenvironment for each stratum.

3. Sample values of the group exposure are obtained combining the concentration estimates for

the microenvironments and the time spent in each of them.

4. Finally group exposure estimates are linked to the health outcome under study.

Steps 2 and 3 are iterated according to the hierarchical formulation producing a posterior distri-

bution for the group exposures of each stratum, together with that of the regression coefficients that

quantify the effect of group exposure on health.
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The use of a Bayesian approach is particularly suitable for exposure studies, as it allows to

combine several sources of data, namely the microenvironment concentrations and the time activity

pattern, in a unified framework, taking into account the uncertainty in each of the sources and propa-

gating it through the model. In addition, it enables the inclusion of any available information on one

or more parameters through the specification of informed prior distributions.

Statistical formulation of personal exposure model

In ecological studies, the information about health and exposure data is available only at the

group level, (k = 1,. . ., K throughout the paper), identified by a combination of covariates relevant

for the study, like age, sex, time, location. Thus the outcome of interest is defined as the number of

events occurring for the kth group and the method we propose in this paper estimates the posterior

distribution of exposure to air pollution for each group (group exposure). Throughout the paper we

will use equivalently “stratum” or “group” when we refer to k.

To obtain an estimate for the group exposure Xk we take advantage of (i) information about

the activity pattern of people through the day in each microenvironment, available from diaries col-

lected in previous studies; (ii) known functions from the literature that link the microenvironment

concentrations to the ambient value for the pollutant (Z).

Following Burke et al., (2001) we assume that the environment is divided in several microen-

vironments indexed by m, which differ either in the sources of pollution or in their concentration.

Throughout the paper we refer to PM10 as the generic pollutant Z, but the same methodology can be

applied to different types of particulates and different pollutants. The diaries for people who belong

to each stratum are modeled as determinations of a multinomial distribution on the time spent in the

microenvironments:

Tki ∼ Multinomial(pk, n)(1)

where n represents the total amount of time in each unit (e.g. 1440 minutes in a day), pk =

(p1k, . . . , pMk) is a vector representing the unknown probability of spending time during the day

in microenvironment m for each stratum k and i = 1, . . . , Ik indexes the subjects in the kth stratum.

Similarly to McBride et al. (2007), a Dirichlet distribution is specified on the vector pk with minimally

informative prior:

pk ∼ Dir(α1, . . . , αm, . . . , αM ) αm = 1(2)

allowing the posterior distribution of pk to be easily estimated.

In a typical time activity database, information from the diaries to be included in (1) is avail-

able for a restricted number of days, but the time series studies on short term effect of exposure to

pollutants usually include daily measures of ambient concentration over a period of several years. As

a first approximation, we assume that the probability of spending time in each microenvironment (pk)

remains constant for the entire period under study and is informed by the diaries in (1); if detailed

time activity data become available for different years, this assumption can be easily relaxed. For

predictive purpose we allow the time spent in each microenvironment to vary, as for each day j we

predict it from a Multinomial distribution parametrized by :

T pred
k1 (j), . . . , T pred

kM (j) ∼ Multinomial(pk, n)

We assume that the concentration of each microenvironment for each time unit j = 1, . . . , J

(e.g. day) is obtained through a linear function of the ambient value Z(j)

Ckm(j) = akm + bkmZ(j)(3)
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where a and b have a different specification for different types of microenvironment and they are

allowed to depend on the stratum k. We consider six microenvironments and following Zidek et al.,

(2007) we distinguish between closed (house) and open (vehicle, office, other indoor like schools, stores,

bar/restaurants and outdoor) ones.

An open microenvironment is assumed not to produce sources of PM10 (Zidek et al., 2007). In

this case the intercept and the slope in (3) do not depend on the stratum, so we drop the index k.

am and bm are not observed and uncertainty on their values enters (3) by means of an informative

normal prior distribution, obtained from the literature (Murray et al., 1997).

A closed microenvironment is characterized by its own sources of pollutant such as smoking

and cooking emissions; in this case the concentration is obtained through a complex mass balance

equation, where akm and bkm are functions of several unknown quantities (volume of the house, air

exchange rate, penetration factor, deposition rate).

Both in open and closed microenvironments, the concentration Ckm(j) for stratum k and mi-

croenvironment m, (m = 1, . . . ,M), is functionally related to Z(j) via unknown parameters that are

given prior distributions and consequently Ckm(j) is a random variable.

Finally, for group k and day j, the time activity adjusted exposure is obtained as an average of

the microenvironment concentrations weighted by the predicted time spent in each:

Xk(j) =

∑
mCkm(j)T pred

km (j)∑
m T pred

km (j)
(4)

Note that Xk(j) is a random variable as both Ckm and T pred
km (j) are random quantities.

It is important that Tki(j) has the same temporal resolution as Ckm(j) and consequently the

same as the ambient concentration Z(j), since they are combined to obtain Xk(j). We return to this

point and propose refinement of the temporal resolution in the Discussion.

A graphical representation of the model is presented in Figure 1 using a directed acyclic graph

(DAG) where circles denote unobserved quantities and rectangles indicate observed quantities; solid

arrows identify stochastic dependence, while dashed arrows indicate functional relationship.

Tki1, . . . , TkiM C1(j)
CM (j)

b1a1
aM bM… …Xk1(j) XkM (j)… …Xk(j) confounders

pk1, . . . , pkMT predki1 , . . . , T predkiM
Mass balanceequation

(c)

(b)(a)

confounders(d)βk βFBkXFBk (j)EkYk(j) Yk(j)Ek
Z(j)

Figure 1: Directed Acyclic Graph of the

model

Graphical representation of the model through
a Directed Acyclic Graph (DAG). The figure
shows (a) how the diaries are linked to the ex-
posure to PM10 for the kth stratum and a day j
through the time spent in each microenviron-
ment; (b) the model on the concentration, a
function of ambient PM10 for day j; (c) the
interrupted link between the exposure and the
health outcome (Yk(j)), i.e. the uncertainty on
Yk(j) is not fed back to Xk(j); (d) an alter-
native model where the link between exposure
and health is not cut and the health outcome is
allowed to influence the exposure XFB

k (j) in a
fully Bayesian manner.

The effect of group exposure estimates from (1)-(4) on health outcomes can be investigated

linking these two quantities in an epidemiological perspective. We have included this step in the DAG.

In many cases, the exposure model and the health model are fitted separately and the uncertainty

in the exposure is only “fed forward” to the health outcome - we have depicted this case in panel

(c) of Figure 1 using an interrupted arrow to indicate that the two models are not estimated jointly.

We present a simulation study following (c) in the “Simulation set up” section. In a fully Bayesian
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perspective, the joint distribution of exposure and health parameters is obtained and feedback from

health to exposure is allowed, corresponding to panel (d) that we follow in the “Sensitivity Analysis”

section.

Air pollution and diary data

Data on ambient PM10(j) concentration were obtained from the NMMAPS study, the largest

study on pollutants in US, which covers 108 cities (Samet et al., 2000) and analysis was limited to the

last five years available (1996-2000). For the sake of simplicity, the US was divided into five regions

(North East, South, MidWest, Mountain, Pacific) and in each region the city characterized by the

smallest proportion of missing values for PM10(j) was chosen for illustration (5% for Pittsburgh, 9%

for Houston, 0.08% for Chicago, 0.05% for Denver, 9% for Sacramento). For each city the ambient

concentration was estimated as the daily mean value of PM10(j) (µg/m
3), obtained as the average over

all the monitoring sites in that city. Missing values were readily imputed by specifying a distribution

on PM10(j) (e.g. PM10(j) ∼ LogN(µ, σ)) with hyper parameters that ensure a proper but vague

prior).

The diaries of activities were derived from the CHAD database, using information available

for 7100 people older than 16. Individuals were stratified into 8 groups, according to age (< 65,

≥ 65), sex and day of the week (weekday, weekend), characteristics which influence the pattern of

activities and that are generally available for a typical health outcome. Six microenvironments were

considered (House, Vehicle, Office, Other indoor, Bar/Restaurant and Outdoor) and the time spent in

each microenvironment was calculated for each group. The average number of smoked cigarettes and

the average time spent cooking were also included in the model as observed quantities obtained from

the diaries; the volume of the house was assigned a prior distribution based on the type of dwelling

(detached house, semi-detached/terraced house, flat, other) and for each city the average volume was

considered, weighted by the proportion of different dwellings in that city.

The model for the five cities built in equations (1)-(4) and by the prior distributions has been

implemented in the free software WinBUGS.

Comparison of exposure-response functions (ERF)

In an epidemiological study, when the health outcome is available only at the group level, a

Poisson log-linear model is commonly used to link the exposure to it. A Poisson distribution for the

number of outcomes Yk(j) ∼ Pois(Ekµk(j)) is assumed for each stratum k, where Ek is the expected

number of outcomes for the kth stratum, and the logarithm of the parameter µk(j) is a function of the

exposure variable. Then typically the ERF is assumed log-linear with respect to the group exposure

variable:

logµk(j) = µ0 +Xk(j)β
X
k + confounders(5)

where µ0 is the mean risk of experiencing the outcome in the population under study and βX
k is the

log-relative risk representing the change in the risk of the outcome when the average group exposure

Xk(j) changes by one unit. Linear or non linear functions of potential confounders can be included in

the model.

The group exposure Xk(j) can be interpreted as the average exposure for all the individuals

belonging to the kth stratum during the day j. When Xk(j) is replaced by the ambient concentration

Z(j), it leads to the substitution of Xk(j)β
X
k by Z(j)βZ in (5). In this context we want to show how

the estimates of relative risk of death differ when the effect of the group exposure Xk(j) is the prime

interest or when the focus of the inference is the crude effect of the ambient concentration Z(j), the

typical exposure measure adopted in time series studies.
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Simulation set up

We use a realistic simulation study inspired by air pollution scenarios. Following Schwartz et

al., (2000) we defined two possible true ERF:

• linear (βX
k Xk)

• piecewise linear, with a slope of 0 for observations below 20 µg/m3, which represents a hypoth-

esized effect threshold ( 0 if Xk(j) < 20µg/m3 and βX
k Xk if Xk(j) ≥ 20µg/m3).

For the sake of simplicity we did not run the simulation on all the 5 cities, but we considered

only Pittsburgh, and we defined only four strata based on the age (< 65, ≥ 65) and day of the week

(weekday/weekend) for each of these functions.

Using ambient data from the NMMAPS study for Pittsburgh and diaries of activities from the

CHAD database

1. we ran the Bayesian personal exposure distribution model for one year (j = 1, . . . , 365) and

obtained posterior distributions for each day for the group exposure; ((a) and (b) in Figure 1)

2. we selected a reasonable spectrum of values for the true exposure-response coefficient βX
k ,

the log-relative risk for group exposure to the pollutant, here PM10(j). The values were chosen to

range between 0.005 and 0.1, where lower values are based on the WHO ERF (Ostro et al., 2004)

which identifies an increment in relative risk for all cause mortality of 0.8% for an increase of ambient

PM10(j) concentration of 10 µg/m3 and higher values are seen in studies estimating air pollution

exposure at finer as opposed to coarser spatial resolution (Willis et al., 2003);

3. we applied each ERF to the time activity adjusted group exposure distribution;

4. we simulated values for a hypothetical mortality outcome

Y sim
k (j) ∼ Pois(Ekf(Xk(j)))(6)

where Ek is the average number of deaths for the two age groups (7.3 for < 65, 19 for ≥ 65) obtained

again from NMMAPS and used as an offset in the simulation ((c) in Figure 1).

The aim of the simulation was to compare the results to those that would be obtained if the

ambient concentration were used for all strata instead of the true group exposure. So we also analyzed

the simulated data with a log-linear model where the outcomes Y sim
k (j) simulated in (6) are linked to

the ambient concentration Z(j):

Y sim
k (j) ∼ Pois(Ekf(Z(j)))(7)

where f(Z(j)) can again be a linear ERF f(Z(j)) = µ0 + Z(j)βZ
k or a linear threshold ERF, with

f(Z(j)) = µ0 + Z(j)βZ1
k if Xk(j) < 20µg/m3 and f(Z(j)) = µ0 + Z(j)βZ2

k if Xk(j) ≥ 20µg/m3. The

coefficients βZ
k , β

Z1
k and βZ2

k represent the misspecified log-relative risks for the stratum k for the

two ERFs. Note that we assumed the same threshold (20µg/m3) both for ambient concentration and

group exposure. This would correspond to the analysis model presented in Figure 1 (c) or (d), but

where Z(j) replaces Xk(j).

The entire simulation process was repeated 500 times using different values of the posterior

distribution of the exposure obtained from the Bayesian model described in (1)-(4). Finally, we

compared results for exposure-response coefficients obtained using the ambient concentration with the

values set in the simulation scenarios.

Results

Time-activity patterns
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Time spent in the different microenvironments was remarkably consistent among the five cities

under study: for instance < 65 years old males spent the majority of time at home (∼ 60% of time

during the weekday and 75% at the weekend), and in the office (∼ 25% overall in the week and 6-9%

at the weekend).

As expected, there were differences in the time spent in each microenvironment by age and sex,

with the office microenvironment mainly visited by those < 65 years, more time spent at home by men

and women ≥ 65 during the week and more time spent by males than females outdoors, especially

males < 65 years old.

Difference in relative risks: group exposure vs ambient concentrations

Average exposures using ambient concentrations were found to be higher than estimated group

exposures in all the cities and this was consistent by sex and age (Figure 2). As expected, the time

activity adjusted exposure, Xk(j), shows heterogeneity between cities - again consistent by sex and

age group. This is mostly driven by the difference in the values of the ambient PM10 concentration

(the diamond shape in Figure 2), which enters (3) to estimate the concentration of the different

microenvironments.

Figure 2: Posterior distribution of group exposure vs ambient concentration
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Figure 3 (left) shows the distribution of the difference between estimated group exposure and ambient

concentration Z(j) for the simulation study. Similarly to the real data presented in Figure 2, the

difference is negative, i.e. the exposure is overestimated when the ambient concentration is used in

place of the group exposure, where the assumption is effectively that people spend all their time

outdoor.

A similar behavior is observed for the relative risks (RRs), with values obtained using the ambient

concentration Z(j) always smaller, ranging for instance between 1.002 and 1.003 for the different strata

when the relative risk for the group exposure is set to 1.005. The difference increases as the RR gets

larger. The ratio between log-relative risk using group exposure and log-relative risk using ambient

concentration (
βX
k

βZ
k

) ranges between 1.99 for older people during weekday and 2.11 for older people

during weekend. As the value of the relative risk set in the simulation increases, the ratio becomes

larger, reaching 2.52 for younger people during weekend when the simulated RR=1.1. This trend in

the ratios is illustrated in Figure 3 (right) for the four strata (age greater or less than 65 and weekday

or weekend) using the linear ERF. The results show that even though the discrepancy of exposure

does seem modest, the impact on the relative risk is noticeable, with always smaller values for the

model that considers the ambient concentration as a surrogate measure of exposure for the group.
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Figure 3: Difference in the exposure and relative risk for different strata assuming a

linear ERF: simulation study on Pittsburgh

Sensitivity analysis: Fully Bayesian model

The simulation study followed Figure 1 (c) and consisted of two separate steps: (i) the group

exposure is estimated and (ii) is linked to the health outcome in the epidemiological study. This

means that uncertainty from the health outcome cannot influence the exposure values, which is called

in a Bayesian perspective “cut of feedback” (Lunn et al., 2009). To investigate the effect of allowing

feedback on Xk(j) we performed a sensitivity analysis building a unified global model following Figure

1 (d) in a fully Bayesian manner. We performed this investigation for a simplified version of the data,

considering each of the five cities separately. We found that the average group exposure Xk(j) is

slightly smaller when the feedback is allowed. The results are consistent for the different cities; they

go the same way for all the strata.

Consequently, allowing feedback leads to slightly increased RR of mortality, ranging from -0.003 to

0.009 where the model with feedback cut shows values between -0.003 and 0.005.

One drawback of implementing the fully Bayesian version described in Figure 1(d) is that the MCMC

sampling used to estimate the refined posterior distribution for the full model becomes more compu-

tationally intensive and might require custom made programs if the number of strata is large.

Discussion

In this paper we propose a Bayesian model that uses time activity data to estimate the exposure to

air pollution at the group level. It allows (i) integration of uncertainty in a principled way, specifying

distributions both on parameters and on latent exposure quantities and (ii) use of individual level

data (i.e. activity diaries) to estimate the probability of spending time in each microenvironment for

each group.

Differently from the time series approach where the inference is done at the population level, we

consider the individuals as the target, but as we obtain directly a distribution for the aggregated time

that each group spent in each microenvironment, it does not require a complex simulation process for

each individual exposure that then needs to be averaged when performing the link with the health

outcome. Thus our approach can easily deal with thousands of diaries. Moreover, as inference is

directly made at the group level of interest, it is easier to investigate and to interpret the main

patterns of differences across the population strata.
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In our example using US data, we found that diaries from different cities did not greatly in-

fluence the group exposure and that there was stability in the activity patterns. This might not be

generalizable to other countries, especially if climate differs substantially between different locations.

It is therefore good practice to include location specific diaries where possible, in order to avoid biases,

even if small, due to the different behavior of people. As an additional benefit of our model of time

activity diaries, when several geographic regions are available and reasonably similar, it would be

possible to estimate time activity patterns in a hierarchical manner and borrow information across

the different regions on some parameters if needed (e.g. if numbers by area are small), strengthening

the inference.

In a realistic simulation study we showed that the relative risks obtained when ambient concen-

tration is used are always closer to 1 than when the group exposure is considered and that the ratio

between the two log-relative risks (
βX
k

βZ
k

) is always larger than 1.5. This suggests that when the interest

is on the individuals, an attenuation of the exposure-response coefficient occurs using the ambient

concentration. This attenuation can be framed in a measurement error perspective, as Z(j) acts as

a surrogate for the individual exposure. The range of attenuation found for the relative risks was

comparable to that obtained by Shaddick et al., (2008) applying a detailed time activity simulator to

time activity diaries in London during 1997.

The sensitivity analysis on the effects of allowing feedback shows smaller exposures for the 5

cities, with slightly larger regression coefficients βX
k , suggesting that when information flows from the

outcome to the exposure the attenuation, quantified by
βX
k

βZ
k

, is generally slightly higher and could have

a more substantial impact on the epidemiological results. However, it would be simplistic to suggest

that the same level of attenuation is always expected as it depends on different factors (e.g. time

activity patterns, indoor emissions, distribution of the parameters in (3)).

It has been argued that in epidemiological studies only functions based on the ambient concen-

tration (concentration-response functions) should be used, as they can be regulated, whereas human

behavior, reflected in the ERF are not subjected to regulation. Moreover, as the indoor sources re-

main more or less constant across time, the fluctuations in the ambient sources determine the RR

in the epidemiological study when ERF is included. On the other hand it can be argued back that

disseminating the results of studies which use ERF could sensitize individuals about how different

activities lead to differences in exposure to air pollution. In addition, the size of the RR using ERF

better reflects the health impact of air pollution and the indoor sources do contribute to the health

outcome even though ambient fluctuation determine the RR.

In this context we aimed at contributing to this debate presenting the range of differences that

could occur using ambient concentration instead of group exposure and, as differences varied by strata

(age group and weekday/weekends), stress that this could lead to different epidemiological conclusions

with consequent policy implications.
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