
Wireless Sensor Networks and the Statistical Sciences 
 

Toscas, Peter J. 
CSIRO Mathematics, Informatics and Statistics 
Private Bag 33 
South Clayton, VIC 3169, Australia 
E-mail: Peter.Toscas@csiro.au 
 
Garcia-Flores, Rodolfo 
CSIRO Mathematics, Informatics and Statistics 
Private Bag 33 
South Clayton, VIC 3169, Australia 
 
Lee, Dae-Jin 
CSIRO Mathematics, Informatics and Statistics 
Private Bag 33 
South Clayton, VIC 3169, Australia 
 

Abstract 
 

Wireless sensor networks (WSNs) are increasingly being used in many 
application areas.  These can range from environmental monitoring of outdoor natural 
processes to indoor environmental monitoring of buildings.  WSNs are attractive 
because they are relatively cheap to deploy, but this comes at the price of some sever 
constraints.  These constraints throw up a number of interesting statistical challenges.  
Here we give an overview of some of the challenges that WSNs pose for statisticians. 
 
1. Introduction 
 

Wireless sensor networks are increasingly being deployed for monitoring 
purposes for many different applications.  Yick et al. (2008) breakdown the 
applications of sensor networks into two broad areas, tracking and monitoring.  
Tracking applications includes enemy tracking for military purposes, animals for 
habitat purposes, and traffic congestion.  Monitoring applications include inventory 
monitoring for business purposes, security detection for military and security reasons, 
animal monitoring for the identification of changes in habitat, patient monitoring for 
health purposes, structural monitoring for the structural soundness of buildings, 
bridges and other important infrastructure, machine monitoring for preventative 
maintenance, and for environmental monitoring.  In many of these application areas 
the big attraction for using sensors is the opportunity to greatly increase the temporal 
monitoring rate and the spatial extent of monitoring (Benson et al., 2010). 

 One environmental monitoring example is the Springbrook study in South-East 
Queensland, where up to 200 sensor nodes will eventually be deployed to monitor the 
regeneration of the rainforest at an old winery farm site.  The nodes are placed in three 
different areas: old forest, regenerating forest and open grassland.  All the nodes 
monitor a number of variables such as air humidity, air temperature, leaf wetness, and 
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soil moisture.  Some of the nodes also monitor other variables such as accumulative 
hail, accumulative rain, air pressure, rain duration, rain intensity, soil water potential, 
solar power, wind direction, and wind speed.  In addition, some nodes have been 
fitted out with audio and video sensors for the identification of animals in the local 
environment (Sensornets CSIRO, 2011).  The purpose of the deployment of the 
network is to undertake a long-term study to identify the factors that contribute to 
rainforest regeneration and the impact on biodiversity (DERM, 2011).  In Figure 1 an 
image of the Springbrook study area is displayed as are the locations of the currently 
deployed sensor nodes. 

Another environmental example of a sensor network is the one in the Lake 
Wivenhoe area in South-East Queensland, where over 200 water, land and mobile 
sensor nodes have been deployed to monitor the movement of cattle, the local 
environment and weather conditions, and water quality (CSIRO ICT Centre, 2009).  
The sensors measure a number of variables, including air and water temperature, air 
humidity, turbidity, wind direction and speed, and the intensity of the sunlight.  The 
aim of the project is to ensure that the drinking water quality for South-East 
Queensland meets the required standard. 

The main difference between WSNs and traditional sensor network designs is 
that they suffer a number of key resource and design constraints that do not afflict the 
latter.  These include limited storage and processing capability at the sensor nodes, 
low bandwidth for transmission of data, short communication range often 
necessitating multi-hop transmission of data to get to server for storage, sever limits 
on available energy for the node to run (Akyildiz et al., 2002, Garcia-Hernandez et 
al., 2007, and Yick et al., 2008). 

These constraints raise a number of challenges for the statistical analysis of data 
collected using WSNs.  In this paper we outline some of these challenges.  In the next 
section we look at some of the constraints on WSNs and what that can mean for the 
data collection process for WSNs.  In the following section we discuss some of the 
statistical research opportunities that the large volumes of data coming from WSNs 
provide.  In the fourth section we look at some of the statistical issues around sensor 
network designs.  We end the paper with some concluding remarks. 

 

 
Figure 1. Google map image of the Springbrook sensor network with sensor node 
locations highlighted. 
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2. Do you know what type of data you are analyzing? 
 

Each node in a WSN has to execute many tasks to collect data and to then 
transmit the data towards the sink for storage in a server.  The node often has to be 
available to help data packets from nodes further out from the sink reach the sink by 
receiving the data and then forwarding it to sensors closer to the sink, or processing 
the received data with the data collected at the node and then forwarding the updated 
data to sensors closer to the sink.  This often has to be done on limited energy 
resources because the nodes in WSNs are not connected to a power source and have to 
rely on battery packs with limited power or energy harvesting methods such as solar 
energy to recharge depleted batteries.  In addition, to conserve battery energy the 
bandwidth for transmission of data is low, limiting the amount of data that can be sent 
through.  The computer science and engineering communities are actively researching 
methods for optimizing the operation of sensor nodes to minimizing energy usage and 
thus extend the life of the node, and reliably deliver data packets to the sink with 
minimal error and lose of data (see e.g. Akyildiz et al., 2002, Garcia-Hernandez et al., 
2007, and Yick et al., 2008, Buratti et al., 2009, and Rosberg et al., 2010).  These 
computer science and engineering issues will not be directly discussed further in this 
paper other than to say that it is a fertile field for those interested in operations 
research type problems, especially around joint optimization of different components 
of the operation of sensor nodes and the sensor network. 

From a statistical perspective the main interest is how these constraints on WSNs 
affect the data collection process and what is eventually returned to the sink for 
storage and data analysis.  One approach that can be used is to forward to the sink all 
the raw data collected.  This is the case in the Springbrook study, where sensor nodes 
take readings every 15 minutes and then forward these to the sink via multi-hop 
communication.  In such a case, data analysis is relatively straight forward from the 
perspective that so long as there is no major breakdown in the network the data 
collected comes in regularly and most of the sensor nodes are providing data from 
their immediate vicinity, thus giving both spatial and temporal coverage.  This, 
however, is not always the case.  In many sensor networks data forwarded to the sink 
may actually be aggregated data (Greenwald and Khanna, 2004 and Yick et al., 2008).  
This could be in the form of the maximum, minimum, mean, sum or some other 
summary measure of a number of observations at one sensor node or at multiple 
sensor nodes, resulting in energy savings since fewer data packets are forwarded to 
the sink.  In such a case supplementary information would be helpful in analyzing the 
data.  For example, the number of observations that make up the aggregated summary 
values (and the mean and variance, both within a sensor and between sensors, if these 
are not summary statistics being forwarded back to the sink), and from which sensor 
nodes the observations came from if the aggregated values summarize observations 
from more than one sensor.  (The mean and variance, both within a sensor and 
between sensors, for the aggregated values should also be forwarded to the sink if 
these are not in the set of default summary values being transmitted to the sink.) This 
information may not always be collected or a query has to be sent to the network to 
ensure the information is collected.  In a self-organizing network the pattern of which 
sensor nodes “cluster” together to form aggregate values may change as nodes fail, or 
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as the energy availability at each node changes the network may re-organize to 
minimize energy loss (Culler et al., 2004). 

Aggregation raises the issue of quality assurance and quality control (QA/QC) 
for the data collected.  When all the raw data are forwarded back to the sink 
methodologies for indentifying erroneous or suspect observations can be used to 
examine the data.  Due to the spatio-temporal nature of the data this could involve 
looking for a combination of temporal, spatial, and multivariate consistency in the 
data (Sparks and Okugami, 2011).  Temporal consistency checks involve examining 
the time-series of data for a variable from one node.  Spatial consistency checks 
involve examining the data for a variable from a number of geographically 
neighboring sites, and multivariate consistency checks is when a number of variables 
collected at the same node and at the same times are examined for consistency.  Joint 
temporal, spatial and multivariate consistency checks are also possible (Sparks and 
Okugami, 2011).  For aggregated data being sent to the sink, the impact of the 
inclusion of a small number of erroneous observations in the aggregated statistic will 
be mitigated by the non-erroneous observations in the aggregated statistic, but if the 
aggregated value being sent to the sink is not a robust measure such as a median or 
trimmed mean, the aggregated value is likely to be corrupted by the inclusion of the 
erroneous observations.  This means that it is important for QA/QC capabilities to be 
deployed at the sensor nodes when aggregated data is sent back to the sink.  This 
capability has to be simple but robust as the computational capability at the sensor 
node is limited and energy needs to be conserved. 

Other energy and communication savings approaches can also impact the quality 
of the data.  Although the Sprinkbrook sensors nodes forward the raw data, to save 
energy the time that the observations are recorded is not forwarded.  The time stamp 
in the database where the data are ultimately stored is the time that the data arrived at 
the sink.  Often this is not a serious problem when the network is working well as the 
data collected arrives at the sink within seconds, but if there are delays in the 
transmission of data to the sink due to node failures or other problems in the network, 
the time stamp recorded in the database may be very different to the time that the 
observations were actually recorded.  One simple solution is for the sensor node to 
increment by one an integer variable every time it is scheduled to take recordings.  
This will help with chronologically ordering the observations if delays in the system 
results in a breakdown in the sequence in which observations arrive at the sink.  This 
approach, however, does not handle clock drift at the sensor node. 
 
3. Large data sets 
 

Sensor networks can generate lots of data in a short time.  For example, in the 
Springbrook study sensor nodes record every 15 minutes, which means that if there 
are 175 sensor nodes finally deployed, with at least five variables recorded at each 
sensor node every time measurements are taken, then at least 84,000 observations will 
be recorded and transmitted to the sink each day or over 30 million in a year 
(assuming no network problems).  One approach to handling such large data is to 
reduce the data size by aggregating as discussed in the previous section.  Another 
approach is to use compressive sampling (or sensing) techniques such as wavelets to 
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reduce the volume of data needed to be sent to the sink for the signal to be recreated 
(Masiero et al., 2009, and Yick et al., 2008).  It would be helpful to build on the work 
of Fuentes et al. (2006) to develop spatio-temporal wavelets methodology for the 
analysis of sensor network data compressed using wavelets.  The attraction of spatio-
temporal modelling using wavelets is that it can naturally handle non-stationarity. 

The recording of audio sound or video can dramatically increase the data 
volumes making it infeasible for most WSNs to transmit this information to the sink 
due to energy and communication bandwidth constraints.  The Sprinkbrook study is 
exploring the use of bio-acoustic and video monitoring methodology for the 
identification of specific animal species (DERM, 2011).  This can be done by 
providing greater electronic storage space at each sensor node for the audio or video 
recording to be stored until it is physically downloaded onto laptops at regular 
intervals.  For other applications, such as security and intrusion detection, this is 
unsatisfactory.  For these applications it is more desirable to have real-time event 
detection and pattern recognition methodology at the sensor node or distributed across 
a number of sensor nodes.  This will offer the best chance of quickly identifying any 
threats.  This entails the development of event detection and pattern recognition 
methods that can work in highly constrained computational environments and can 
work in a distributed way to garner more computational resources from surrounding 
sensor nodes. 

The need for real-time monitoring at the node or distributed across a number of 
nodes could be useful for environmental studies as well.  For example, in the 
Springbrook study continuous audio or video recording will quickly consume the 
electronic storage space and deplete the energy resources of the sensor nodes.  There 
is a need for event detection to identify if there is an animal in the vicinity, and then 
pattern recognition to identify if it is a species that is of interest.  If so, then recording 
can begin.  Another reason for real-time monitoring in environmental studies is to 
monitor the energy stores in sensor nodes and in the network, to help regulate its 
operation by minimizing energy usage (Basha et al., 2011). 

Real-time monitoring in sensor networks offers opportunities for research into 
spatio-temporal data assimilation methodologies.  One of the tasks of the sensor 
network in the Lake Wivenhoe project is to validate hydrodynamic models that model 
the 3-D movement of water in the system (CSIRO Smart Sensors, 2010).  In a major 
flood event, or if contaminants enter the system either by accident or deliberately due 
to terrorist or criminal activity, data assimilation methodology such as the ensemble 
Kalman filter (EnKF) (Evensen, 2003) or particle filter (PF) (Doucet et al., 2001) can 
be used to combine observational data from the sensor network with the 
hydrodynamic model to forecast the 3-D movement of the pollutants or contaminants 
in the water system, thus helping decision makers make better informed decisions.  In 
studies where the sensor network covers a very large area, assimilating sensor 
network data with remote sensing data and process models may be beneficial, with the 
remote sensing data providing the spatial observation coverage while the sensor 
network provides the temporal observation coverage.  The sensor network 
observations can be used to validate the remote sensing information. 
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4. Sensor network design 
 

As noted previously, WSNs are constrained by energy, communication 
bandwidth, transmission range, and storage capacity at the nodes.  This means that 
when designing a monitoring sensor network these constraints need to be taken into 
account, in addition to the normal statistical issues considered in designing monitoring 
networks.  It is not enough to base sensor network designs on optimizing spatial 
covariance estimation (Zhu and Stein, 2005) or some function of the spatial prediction 
variance (Sacks and Schiller, 1988, and Cressie, 1993).  Any optimization needs to 
account for these constraints to minimize energy consumption, otherwise repair and 
energy source replacement costs can escalate, and the probability of successfully 
transferring data to the sink may be too low thus compromising the data collection 
process and hence statistical inference.  Krause et al. (2011) have developed 
methodology for near optimal selection of sensor node locations based on 
communication costs and on prediction uncertainty.  They use Gaussian processes for 
spatial prediction and modelling the spatial variability of the communications link 
quality.  This work needs to be extended to take account of multiple criteria, such as 
available energy resources, communication bandwidth and transmission range, which 
may be dependent on the environment in which the network is to be deployed.  For 
example, dense foliage or a hill near a sensor node may restrict the transmission 
distance in certain directions.  Not accounting for this in the sensor network design 
may result in little data from this sensor node getting back to the sink.  Extending this 
work further for the prediction and estimation of multivariate data adds another layer 
of complexity. 

Accounting for the energy constraints will require network designs that can 
tolerate adaptation in the network.  As the energy reserves in some sensor nodes 
deplete over time, to prolong the life of the network, these sensor nodes will have to 
sample and transmit information less regularly.  This will impact the spatial sampling 
coverage at any given time and the temporal coverage at sensor node locations.  There 
will be a need for network design methodology that can adaptively change the 
configuration of which sensor nodes sample and when they sample to minimize 
prediction or estimation uncertainty under a changing regime of energy resource 
availability in the network.  An associated issue is the addition to, or removal from the 
network of sensor nodes.  Recently research effort has gone into developing methods 
for the addition or removal of sites from a monitoring network (e.g. Arbia and 
Lafratta, 1997, Fuentes et al., 2007, and Ainslie et al., 2009).  These methods will 
need to be extended or new methods developed to account for the various constraints 
on the operation of WSNs. 

Related to the need for the sensor network design to be adaptive is the issue of 
sensor network designs being robust to changes in the environment.  Krause et al. 
(2011) look at a simplified version of this design robustness issue in which it is 
assumed that after a period of monitoring, the environment being monitored changes.  
They propose optimizing the sensor network design over a number of environmental 
scenarios, so that the sensor network design is robust to changing environments.  
Research is needed in identifying sensor networks designs that are robust to 
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environmental scenarios not considered previously in scenarios during the planning 
phase of the sensor network. 

WSNs may also be characterised by the existence of mobile sensors in the 
network (Yick et al., 2008).  The Lake Wivenhoe study above is an example of a 
sensor network that uses a combination of stationary and mobile sensors.  An 
autonomous catamaran is deployed to undertake a number of tasks, including 
calibrating the stationary sensors, ascertaining if anomalous readings from stationary 
sensors are valid, and measuring relevant environmental variables (CSIRO Smart 
Sensors, 2010).  The measuring equipment on the catamaran is more accurate and 
precise than those on the stationary sensors.  Developing algorithms for optimising 
sensor network designs where stationary and mobile sensors exist poses a number of 
interesting research challenges.  These include choosing the spatio-temporal path of 
the mobile sensor that will maximize information gain (Singh et al., 2010), but doing 
this in a way that accounts for the less precise and less accurate stationary sensor 
network, and factors in the maintenance and repair duties the mobile sensor may also 
be required to perform.  This is a complex multiple criteria optimisation problem. 
 
5. Concluding remarks 
 

In this paper we have discussed some of the statistical research issues posed by 
WSNs.  WNSs are characterized by a number of constraints on their operation that 
need to be accounted for when designing the placement of the nodes in the WSN.  
Accounting for these constraints while minimizing estimation or prediction 
uncertainty, raises a number of interesting optimization challenges.  The collection of 
large data and the need to transmit all or some summary of this data by WSNs 
necessitates a number of compromises that require fast and efficient statistical 
methodology that can be executed in computing environments with limited electronic 
storage and processing capability. 

In this paper we have predominantly focused on the immediate needs for 
collecting and analysing sensor network data, particularly around univariate spatial 
and spatio-temporal analyses.  Given that sensor nodes often will be collecting data on 
multi variables, the challenges listed previously become more so as one thinks about 
undertaking real-time multivariate spatio-temporal analyses of sensor network data 
for real-time or near real-time decision making.  Using a batch approach to analyse 
the data is not suitable, as new data will be arriving at regular intervals (Domingos 
and Hulten, 2003).  The extensions of data assimilation methods such as the EnKF 
and PF to the multivariate spatio-temporal data setting will be important, as will be 
evaluating the performance of the EnKF and PF as other data assimilation methods 
may need to be developed if the EnKF and PF do not work well for the multivariate 
spatio-temporal setting. 

Research into data streaming tools will be required to help quickly quantify and 
visualise changing spatial and multivariate associations over time.  Current spatio-
temporal modelling approaches for estimating associations do not work in real-time, 
at least not at the time scales at which some sensor networks can record observations 
and transmit them for analysis.  To work in real-time new multivariate spatio-
temporal tools will need to efficiently exploit sparsity in multivariate space.  New 
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methods for estimating partially missing data, such as censored observations, will be 
required, as the Expectation-Maximisation and Markov chain Monte Carlo algorithms 
are too slow to work in real-time.  Recent advances in the development of 
approximate Bayesian methods (Rue and Martino, 2007 and Eidsvik et al., 2009) and 
the use of sparse matrix methodology may offer computational advantages to 
considerably speed up convergence times compared to MCMC analyses.  The 
extension of approximate Bayesian approaches to dynamical systems (Toni et al., 
2009) offers opportunities for extending these methods for data assimilation purposes. 
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