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1. Introduction

Composite indicators are built by combining variables with different possible aggregation strate-

gies (Nardo et al., 2008). Each variable is customarily attached a weight purportedly meant to appre-

ciate the ‘importance’ of that variable. By far the most common strategy to aggregate variables seen

in existing composite indicators (CI) is by means of linear combination of weighted variables, whereby

the composite index y is derived from a set of k variables xi via:

yj =
k∑

i=1

wixji,(1)

where j is one of the individuals being measured by the composite indicator, yj its score, and

xj1, xj2, · · · , xjk are its normalized scores on the k variables. The weights wi are attached by the

developers on the basis of different strategies, be those statistical such as factor analysis or based on

expert evaluation. Weights represent a form of judgement of the relative importance of the differ-

ent variables, including the case of equal weights where all variables are (in theory, though rarely in

practice as well shall see below) equally important.

According to most practitioners (see e.g. Munda (2008)) weights as used in (1) are not measures

of importance, but rather measures of trade off among variables. More precisely the ratio wi
wl

measures

how much of xi must be given up to offset or balance a unit increase in xl. If
wi
wl

= 2 one has to take

away 0.5 from xi to balance for a unit increase in xl.

While this explains clearly what weights are in (1), it is perhaps still not so clear what they

are not, and in particular why they are not measures of importance. Perhaps the problem here is

what is meant by importance. To grasp this it is useful now to consider an alternative strategy of

aggregation, a so-called ‘non compensatory’ one: the outranking matrix of Condorcet (see Munda,

2008 for a review). We give here a nutshell description of the Condorcet matrix for the sake of the

discussion.

Condorcet’s outranking matrix is built starting by pairwise comparisons of individuals, say

individual A against individual B. The comparison is performed as follows: all the weights wi for

which the relative indicator/variable xAi is bigger than xBi are added up in favor of A, while all
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weights for which xBi is better than xAi are added up in favor of B, irrespective of the distance

between xAi and xBi. Note that depending on the meaning of the indicators, the expression ‘xBi

better than xAi’ can either correspond to xBi > xAi or xAi > xBi. In case of tie, namely xBi = xAi,

the weight wi is equally split between the two individuals. Note that the same result is obtained using

the un-normalized score x′ji in place of xji.

These sums of weights populate the n×n outranking matrix, whose element ab is the sum of all

weights of those indicators which see A better than B. By definition, if the weights add up to one, the

entries ab and ba of the outrank matrix sum up to one, and so on for the other couples of individuals.

We are not concerned here with how the outranking matrix is used to order the individuals - a hint is

given in Table 4.

Thus in building the outranking matrix – which is used as a basis to rank the individuals – the

weights are truly used as importance measures. The entire weight is assigned to either an individual

or to another depending of which of the two individuals has the highest score in the relative variable.

Is this not the case when using Eq. (1)? Clearly not, as in (1) the ‘importance’ of the variables

depends much from how they are treated as well as from the covariance structure of the sample, i.e.

how and how much the variables depends upon one another. For example, imagine that the variables

have been normalized via the min-max approach, whereby each variable is subtracted its smallest

element in the sample and divided by the difference between the maximum and the minimum element

in the sample.

xji =
x′ji − x′min,i

x′max,i − x′min,i

(2)

Where x′max,iand x′min,i are the maximum and minimum value respectively for the raw (un-

treated) variables x′i. In this case all xi vary in [0, 1] but their variances differ. Thus a given variable

x′i could be totally non-influent with respect to y simply because its variance is small compared to

that of the other variables, and this largely irrespective of its weight, unless the trivial case where the

variable has all the weight to itself, i.e. wi ≈ 1. Note that the discussion developed thus far applies

to pillars as well as to variables, meaning by a pillar a subset of variables which is identified by either

experts opinion or by e.g. factors analysis as to represent a salient – possibly latent – characteristic of

the composite. One might have a pillar whose collective weights amount to – say – 50% of the total,

but which contributes little to the index because collectively the variance of the pillar is comparatively

small.

This also explains why equal weights is not a sufficient condition for all variables being equally

important. Also the trade off is influenced by the scale of variation of the variables. We just said that

if wi
wi

= 2 one has to take away 0.5 from xi to balance for a unit increase in xi. Imagine now being an

individual (or a country) j trying to balance its score yj by offsetting a 0.5 loss in xi by a unit increase

in xi. This may be easy or impossible depending on the variance of xi. If the variance of xi over all

individuals is e.g. 0.1 it will be highly unlikely that an individual can increase its score by one.

A popular alternative to the min-max normalization (Equation 2) which is less probe to the

shortcomings just illustrated is standardization, whereby each variable’s value is subtracted its mean

and the result is divided by its standard deviation:

xji =
x′ji − µi

σi
,(3)

where µi is the mean of x′i and σi its standard deviation. It is evident from the discussion above on

the Condorcet approach that the variables/indicators do not need to be normalized when using this

method.

Let us now go back to the question of determining the importance of variables. How do we

demonstrate that a variable or pillar is influent or non influent? If we were able to answer confidently to

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS079) p.1326



this question, then maybe we could qualify our statement that ‘weights are not measures of importance

in linear of aggregation’ with a practical statement referred to a given linearly-built composite indicator

y: ‘When aggregating linearly the variables in composite indicate y the developers make an error thus

quantifiable’. The thus is the subject of the present paper.

2. Weights versus importance

The developer of a composite indicator produces and assigns weights as measures of the impor-

tance of the various variables or pillars, whether or not a linear aggregation such as (1) is being used.

Thus one would expect that a measure of correlation (Pearson or Spearman) between y and xi will

give a value which, while not identical to Wi, would at least not contradict it openly. We would for

example call a contradiction a variable/pillar weighting 0.5, i.e. corresponding to 50% of the total of

all weights, and correlating (either Pearson or Spearman) below the .01 level with y. Can we do more

that? Especially for linear aggregation, can we develop or adopt a measure informing the developer

of the percentage error made in assuming weights equal to importance? Normally
∑k

i=1wi = 1, thus

if we could dispose of a likewise normalized importance measure Si such that
∑k

i=1 Si = 1 it would be

natural to measure the error as some function of the distance between wi and Si as a measure of the

error made in assigning that weight, and take an average of the above over the k weights as a measure

of quality of the indicator y itself.

We propose to use as Si the measure:

Si =
Vxi (Ex∼i (y | xi))

V (y)
(4)

Where Vxi (Ex∼i (y | xi)) is the reduction in variance which one can expect by fixing a factor,

(Saltelli and Tarantola, 2002). This measure which is used in sensitivity analysis is also known as Karl

Pearson’s ‘correlation ratio’ η2 (Pearson, 1905). The term V (y) in (4) is simply the unconditional

variance.

Si is a powerful measure of importance, in that it offers a precise definition of importance – we

can define a factor’s (or pillar’s) importance in a CI ‘the expected reduction in variance which would

be obtained if the factor / pillar could be fixed’. A shortcoming of the Si is that they do not add up

to one for the case of correlated variables, though we can re-normalize them for the purpose of the

analysis, as shown in the next section. More details on the rational for this choice of Si – and how it

is computed from the indicator and its input variables, can be found in (Paruolo et al., 2011).

3. An application to the THES and SJTU ranking

The variance based importance measures of the first order (Eq. (4)) have been computed for

two well known composite indicators of university performance: the Academic Ranking of World

Universities by Shanghai’s Jiao Tong University (SJTU) and the one associated to the UK’s Times

Higher Education Supplement (THES). Variables and weights used in the 2008 edition of the ranking

are given in Tables 1 and 2. The following remarks can be made:

• There is much more correlation among the SJTU variables than in the THES ones.

• Although SJTU developers partition their set in more importance variables (weight 20%) and less

important ones (weight 10%) the variables end up being more evenly distributed in importance.

Normalized importance range between 15% and 19%, see Table 3.

• The problems are more serious for THES. Recruiter Review should weight only a 10% and seems

to have instead an importance of more than double. Conversely the variable Full-time equivalent
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faculty per student ratio which should weight for a 20% weights instead less than one half of

that. This means that overall THES relies on peer review (Academic plus recruiter) more than

implied by the developers weights.

4. Conclusions

In (Paruolo et al., 2011), of which this contribution is a summary, we have tackled the issue

of testing the veracity of a composite indicator by comparing the importance of its dimensions – be

these variables or pillars – against a plausible statistical measure. The issue of testing the quality of

CI, also in relation to their normative implications, is a relevant one (Stilgitz et al., 2009, p.65), and

variables’ importance is clearly a normative element. Our approach to test the quality of a composite

indicator is a non invasive one, e.g. it does not require assumptions about modeling the error in the

construction of the index, as in standard sensitivity analysis (Saisana et al. 2005, Saltelli et al., 2008).

Tables

Indicator Weight

Alumni of an institution winning Nobel Prizes and Fields Medals 10%

Staff of an institution winning Nobel Prizes and Fields Medals 20%

Highly cited researchers in 21 broad subject categories 20%

Articles published in Nature and Science 20%

Articles in Science Citation Index Expanded, Social Sciences Citation Index 20%

Academic performance with respect to the size of an institution 10%

Table 1: Variables in SJTU

Indicator Weight

Academic Opinion: Peer review, 6354 academics 40%

Citations per Faculty: Total citation/ Full Time Equivalent faculty 20%

Recruiter Review: Employers’ opinion, 2339 recruiters 10%

International Faculty: Percentage of full-time international staff 5%

International Students: Percentage of full-time international students 5%

Student Faculty: Full-time equivalent faculty/student ratio 20%

Table 2: Variables in THES
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SJTU (503 universities) Original Si Si

weights (rescaled) (Eq. (4) )

Medals alumni 10% 15% 0.70

Medals staff 20% 16% 0.72

Highly cited 20% 19% 0.87

Nature&Science 20% 19% 0.89

Articles 20% 15% 0.69

Size adjusted 10% 16% 0.74

100% 100% 4.61

THES (400 universities)

Peer review 40% 36% 0.82

Citation per faculty 20% 17% 0.38

Recruiter review 10% 24% 0.54

International faculty 5% 5% 0.12

International student 5% 7% 0.16

Faculty per student 20% 9% 0.21

100% 100% 2.22

Table 3: Main effects versus nominal weights.
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RÉSUMÉ (ABSTRACT)

Composite indicators are built by combining input variables within a mathematical model. The

mathematical model can be thought of as made up of all treatments applied to the data as well as

of their combination in the index. Each variable in the index is customarily attached a weight pur-

portedly meant to appreciate the ‘importance’ of that variable. By far the most common strategy to

aggregate variables seen in existing composite indicators is by a weighted arithmetic average of normal-

ized variables, whereby the composite index y is derived from a set of k normalized variables. Weights

are attached by the developers on the basis of different strategies, be those statistical, such as e.g.

factor analysis, or based on expert evaluation, such as e.g. analytic hierarchy process. Weights repre-

sents a form of judgement of the relative importance of the different variables, including the case of

equal weights where all variables are (in theory) equally important. Using methods derived from global

sensitivity analysis we show that important discrepancies exist in most composite indicators between

declared weights and effective importance of variables or pillars.
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Step 1 - Input table to the multicriteria analysis example.

Three countries (A,B,C) need to be ranked according to five

variables (GDP, Unemployment rate, Solid waste, Income Dis-

parity, Crime Rate) and a set of weights. Example from [?].

Country GDP Unemployment Solid waste Disparity Crime

(+) (-) (-) (-) (-)

A 25,000 0.15 0.4 9.2 40

B 45,000 0.10 0.7 13.2 52

C 20,000 0.08 0.35 5.3 80

weights .166 .166 0.333 .166 .166

Step 2 - Countries are compared pairwise. For each com-

parison, e.g. AB, all the weights corresponding to indicators

that favour A versus B are added up as evidence in favour of

‘A better than B’. In this case AB gets the weights of Waste,

Disparity and Crime. BA gets the weights of the remaining

indicators, GDP and unemployment

Couple Evidence

AB 0.333+0.166+0.166=0.666

BA 0.166+0.166=0.333

AC 0.166+0.166=0.333

CA 0.166+0.333+0.166=0.666

BC 0.166+0.166=0.333

CB 0.166+0.333+0.166=0.666

Step 3 - The resulting outranking matrix O. Note that en-

tries Oij and Oji add up to one.

A B C

A 0 0.666 0.333

B 0.333 0 0.333

C 0.666 0.666 0

Step 4 - The matrix O is used to compare the orderings.

For example the ordering BCA gets as support the sum of the

entries OBC ,OBA,OBA. The preferred countries’ ordering is

hence CAB (support=2).

Order Support

ABC 0.666 + 0.333 + 0.333 = 1.333

ACB 0.333 + 0.666 + 0.666 = 1.666

BAC 0.333 + 0.333 + 0.333 = 1

BCA 0.333 + 0.666 + 0.333 = 1.333

CAB 0.666 + 0.666 + 0.666 = 2

CBA 0.666 + 0.333 + 0.666 = 1.666

Table 4: A non compensatory multi criteria ordering. When using this approach, due to Condorcet and

known as Condorcet-Kemeny-Young-Levenglick (CKYL) method (Munda, 2008), the input variables

do not need to be normalized. In the comparison of country A against country B, the weight of each

variable is unambiguously assigned to country A or B depending on whether the variable is higher for

A or B, irrespective of the entity of the difference. In this sense one can say that in this approach

weights are truly measures of importance.
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