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Introduction

In generalized canonical correlation analysis several sets of variables are analyzed simultaneously.
This makes the method suited for the analysis of various types of data. For example, in marketing
research, subjects may be asked to rate a set of objects on a set of attributes. For each individual, a data
matrix can then be constructed where the objects are represented row-wise and the attributes column-
wise. Then, using generalized canonical correlation analysis a graphical representation, sometimes
referred to as a perceptual map, can be made on the basis of the individuals’observation matrices.
Note that, the observation matrices do not necessarily contain the same attributes.

Several generalizations of canonical correlation analysis have been proposed. Some of these are
discussed and compared in Kettenring (1971) and Gower (1989). In this paper, we shall concern
ourselves with the generalization proposed by Carroll (1968). Carroll’s approach has some attractive
properties that makes the method well fit for the analysis of multiple-set data. First of all, compu-
tationally, the method is straightforward as its solution is based on an eigenequation. Secondly, the
method is closely related to several well-known multivariate techniques. In particular, principal com-
ponent analysis and multiple correspondence analysis. Thirdly, Carroll’s generalization takes ordinary
canonical correlation analysis as a special case. Although this last property is well known and already
mentioned by Carroll (1968), a formal proof in the context of generalized canonical correlation analysis
is not easy to find in the literature. Ten Berge (1979) does provide a proof in the context of factor
rotation. In this paper, we will present a new proof of the equivalence. In addition, we propose a new
generalized canonical correlation analysis approach that takes classical canonical correlationa analysis
as a special case and always yields orthogonal canonical variates.

Canonical Correlation Analysis

In canonical correlation analysis (CCA), Hotelling (1936) the aim is to find linear combinations
for two sets of variables in such a way that the correlation between the two linear combinations is
maximal. Let: X1 : n× p1 and X2 : n× p2 denote centered and standardized data matrices. The idea
is to construct w = X1a1 and z = X2a2 so that the correlation between w and z is maximal.

The vectors w and z are the canonical variates. These canonical variates are standardized:
w′w = z′z = 1. The vectors a1 and a2 are often referred to as canonical weights. Instead of obtaining
two canonical variates, additional variates may be constructed that are orthogonal with respect to the
previous ones. Then: W = X1A1 and Z = X2A2 and W′W = Z′Z = I. The canonical variates can
then be obtained by using the following singular value decomposition:

R
− 1
2

11 R12R
− 1
2

22 = UΛV
′
,

where R11 denotes the correlation matrix for the first set of variables: R11 = X′1X1, R22 is the
correlation matrix for the second set: R22 = X′2X2, and R12 gives the between sets correlation
matrix: R12 = X′1X2.

The canonical weights are calculated as
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so that

W′W = A′1R11A1 = U′U = I,

Z′Z = A′2R22A2 = V′V = I,

and

W′Z = Z′W = Λ.

Generalized Canonical Correlation Analysis

Carroll (1968) introduced a generalization of canonical correlation analysis of two sets of vari-
ables to n sets of variables. From here on, we shall refer to this generalization as GCCA. Crucial in
Carroll’s method is the introduction of a so-called group configuration Y. The linear combinations are
chosen in such a way that the sum of squared correlations between them and the group configuration
is at a maximum:

max R2 =

n∑
i=1

r (y,Xiai)
2 ,

s.t. y′y = 1.

An alternative and convenient way of expressing the GCCA objective is as follows:

min
A,Y

φ = trace
n∑
i=1

(Y −XiAi)
′ (Y −XiAi)

s.t. Y′Y = Ik.

This formulation is sometimes refered to as the homogeneity formulation due to its close link with
homogeneity analysis as described in Gifi (1990).

The group configuration matrix Y can be obtained using the eigenequation

(1)

(
n∑
i=1

Pi

)
Y = YΓ.

where

Pi = Xi

(
X′iXi

)−1
X′i.

The matrices Ai can be calculated as

Ai =
(
X′iXi

)−1
X′iY.

Equivalence of GCCA and CCA when there are two sets of variables

Carroll’s generalized canonical correlation analysis takes ordinary canonical correlation analysis
as a special case. Although this property is well known and already mentioned by Carroll (1968),
a formal proof in the context of GCCA is not easy to find in the literature. Here we will prove
the property by showing that, when there are only two sets of variables, orthogonality of the group
configuration implies orthogonality (with respect to the appropriate variance matrices) of the canonical
variates.To show the relationship between CCA and GCCA for two sets of variables, we first show
that the CCA solution is also a GCCA solution.
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CCA =⇒ GCCA :

Note that the group configuration used in GCCA, is not present in CCA. On the other hand,
the canonical weights are restricted in CCA but not in GCCA. That is, in CCA the correlation
is maximized under the restrictions: A′1R11A1 = I and A′2R22A2 = I. In GCCA only the group
configuration is constrained to be orthonormal.

Using the CCA solution W and Z, and substituting their sum in eigenequation 1, we get

(P1 +P2) (W + Z)

=
(
X1R

−1
11 X′1 +X2R

−1
22 X′2

)
(W + Z)

= X1R
−1
11 X′1W +X2R

−1
22 X′2W

+X1R
−1
11 X′1Z+X2R

−1
22 X′2Z

= X1R
− 1
2

11 U+X2R
−1
22 R21R

− 1
2

11 U

+X1R
−1
11 R12R

− 1
2

22 V +X2R
− 1
2

22 V

= W + Z+X2R
− 1
2

22 VΛ+X1R
− 1
2

11 UΛ

= (W + Z) (I+Λ) .

Furthermore as W
′
W = Z′Z = I and W′Z = Z′W = Λ it follows that

(W + Z)′ (W + Z) = 2 (I+Λ) .

Hence,(
2∑
i=1

Pi

)
Y = YΓ,

where Γ = I+Λ, and Y = 1√
2
(W + Z) (I+Λ)−

1
2 so that Y′Y = I.

Now, AGCCA,i = (X
′
iXi)

−1X′iY, so that

√
2AGCCA,1 =

(
X′1X1

)−1
X′1 (W + Z) (I+Λ)−

1
2

=

(
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)
(I+Λ)−

1
2

=

(
R
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2
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− 1
2
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)
(I+Λ)−

1
2

= R
− 1
2

11 U (I+Λ)
1
2

= A1 (I+Λ)
1
2 .

Similarly,
√
2AGCCA,2 = A2 (I+Λ)

1
2 .

Hence, the only difference between the methods concerns the scaling. In GCCA

A′1R11A1 =
1

2
(I+Λ) =

1

2
Γ.

So, starting with a CCA solution, we have shown that the GCCA solution is equivalent. The other way
around is less straightforward. It implies that the orthogonality constraint for the group configuration
Y leads to orthogonality of the canonical variates.

GCCA =⇒ CCA :

We have:

(2) (P1 +P2)Y = YΓ.
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Premultiplication by P1 and P2 yields

(3) P1P2Y = P1Y (Γ− I)

and

(4) P2P1Y = P2Y (Γ− I) .

Hence

(5) P1P2P1Y = P1YD,

and

(6) P2P1P2Y = P2YD,

where

D = (Γ− I)2 .

It follows that

P1P2P1YD−1 = P1Y.

Taking the transpose we see that

Y′P1 = D−1YP1P2P1

hence

(7) Y′P1Y = D−1Y′P1P2P1Y.

Furthermore, pre-multiplying (5) by Y′ yields

(8) Y′P1Y = Y′P1P2P1YD−1.

From (7) and (8) it follows that

DY′P1Y = Y′P1YD,

hence, assuming di 6= dj (for i 6= j), it immediately follows from the diagonality of D, that

Y′P1Y = D1,

where D1 is a diagonal matrix. Hence,

V1 = YP1D
− 1
2

1

is an orthonormal matrix.
In a similar fashion we obtain

Y′P2Y = D2,

where D2 is a diagonal matrix so that

V2 = YP2D
− 1
2

2
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is orthonormal.
For the sake of completeness, let us derive D1 and D2. Pre-multiplication of (5) and (6) by Y′

gives

Y′P1P2P1Y = Y′P1YD = D1D,

and

Y′P2P1P2Y = Y′P2YD = D2D.

Using (3) and (4) these become

Y′P1P2YD
1
2= D1D,

and

Y′P2P1YD
1
2 = D2D.

Hence,

Y′P1P2Y = D1D
1
2

and

Y′P2P1Y = D2D
1
2 .

Clearly, the diagonal matrices D1D
1
2 and D2D

1
2 are symmetric, so that

Y′P1P2Y = Y′P2P1Y

and

D1 = D2.

From (2) and the orthonormality of Y it follows that

Y′ (P1 +P2)Y = Y′P1Y+Y′P2Y=Γ.

Hence,

Γ = D1 +D2 = 2D1 =⇒ D1 = D2 =
1

2
Γ.

Orthogonal Generalized Canonical Correlation Analysis

Recall the GCCA objective:

(9) min
Y,A

trace

n∑
i=1

(Y −XiAi)
′(Y −XiAi)

s.t.Y′Y = I.

In general, the canonical variates XiAi will not be orthogonal. However, for the two variable case
we saw that the orthogonality does hold. It also holds for the special case where the data matrices
are so-called indicator matrices (i.e. matrices with in each row exactly one element equal to one and
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all other elements zero. This special case is equivalent to multiple correspondence analysis (MCA).
Carroll (1968) notes that his method does not yield orthogonal canonical variates and suggest that
this can be resolved by applying some orthogonalization step to the solution. Alternatively, we can
formulate the problem and explicitly impose the restrictions. Hence,

min
Y,A

trace
∑
i

(Y −XiAi)
′(Y −XiAi)

s.t. A′iAi = I. (for all i) and

Y′Y = I.

To solve this problem we first consider:

min
B
trace

∑
i

(Y −XiAi)
′(Y −XiAi)

s.t.A′iAi= I. (voor alle i).

That is, we assume the group configuration to be known.
The objective can be rewritten as

min
Ai

φ = n traceY′Y − 2
∑
i

traceY′XiAi

+
∑
i

traceA′iX
′
iXiAi.

Setting up the Lagrangean we get

n traceY′Y − 2
∑
i

traceY′XiAi +∑
i

traceA′iX
′
iXiAi −

∑
i

traceLi(A
′
iAi − I).

Taking derivatives with respect to Ai yields

−2 traceY′XidAi + 2 traceA′iX
′
iXidAi

−2 traceLiA
′
idAi.

Hence, the first order conditions for Ai are

A′iX
′
iXi −Y′Xi = LiA

′
i.

Postmultiplying by Ai and using the constraint gives

A′iX
′
iXiAi −Y′XiAi = Li.

As the restrictions are symmetric, Li is symmetric. Hence,

Y′XiAi = A′iX
′
iY.

Then (
Y′XiAi

)2
= Y′XiAiA

′
iX
′
iY ⇒(10)

Y′XiAi =
(
Y′XiAiA

′
iX
′
iY
) 1
2 .(11)

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS042) p.763



Given Y and Xi a solution for Ai can be obtained using the singular value decomposition of Y′Xi.
Let

Y′Xi = UiΛiV
′
i,

where Ui and Vi are semi-orthogonal and Λi is a diagonal matrix with as diagonal elements the
singular values of Y′Xi. It is then easily verified that for Ai = ViU

′
i , (10) is satisfied.

Now, instead of assuming Y to be fixed, we can solve the objective for Y assuming the A′is

known:

min
Y
trace

∑
i

(Y −XiAi)
′(Y −XiAi)

s.t.Y′Y = I. (voor alle i).

The objective can be rewritten as

min
Y

φ = n traceY′Y − 2
∑
i

traceY′XiAi

+
∑
i

traceA′iX
′
iXiAi.

or, as the terms involving only Xi and Ai play no role and the restriction implies that n traceY′Y is
constant,:

max
Y
2
∑
i

traceY′XiAi

s.t.Y′Y = I.

Setting up the Lagrangean we get

2
∑
i

traceY′XiAi − traceL(Y′Y − I).

Taking derivatives with respect Y yields and

2
∑
i

traceAi
′X′idY − 2 traceLY′dY = 0.

Hence, the first order condition for Y is∑
i

A′iX
′
i = LY′.

Postmultiplication with Y yields∑
i

A′iX
′
iY = L

and as the restrictions are symmetric, L is symmetric so that(∑
i

A′iX
′
i

)
Y = Y′

(∑
i

XiAi

)
.

Let ∑
i

XiAi = UΛV
′
.
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Then it is easily verified that a solution for Y can be obtained by considering

Y = UV′.

Where U and V are the singular vectors corresponding to the largest singular values.
Iterating between these two problems will lead the objective to monotonically decrease. However,

it is not sure that the thus obtained minimum is a global minimum. Therefore, it is recommended to
repeat the procedure using different initial settings.

Note that, for convenience, the canonical weight matrices were constrained to be orthonormal
here. For the canonical variates to be orthonormal, a rescaling must be carried out. That is,

Arescaled,i =
(
X′iXi

)− 1
2 Ai

so that

A′rescaled,iX
′
iXiArescaled,i = I.

Obviously, this method takes the original CCA approach as a special case.

Conclusion

In this paper, we presented a new prove for the equivalence between classical canonical corre-
lation analysis and Carroll’s (1968) generalized canonical correlation method (when only two sets of
variables are considered). In addition, a new method was proposed that yields an orthogonal group
configuration as well as orthogonal canonical variates. The new method is easy to calculate and takes
classical canonical correlation analysis as a special case.
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