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Abstract 
 
This paper models the time series formed by the monthly flows of Caroni River in Venezuela, since 1950 
to 2003 using regression based on Support Vector Machines (SVR). The mentioned time series was 
preprocessed by extracting the trend and seasonal components through Independent Component Analysis 
(ICA) and the resulting stochastic series was modeled as a Nonlinear Autoregressive Moving Averaging 
process (NARMA), of order defined by Singular Value Decomposition (SVD), using SVR. The model was 
validated by obtaining a prediction error in the flow, lower than traditional statistical models. The results 
of this study demonstrate the strength of nonlinear computational models to predict river flows. 
 
Keywords: regression with support vector machines, flow modeling, independent component analysis, 
singular value decomposition. 
 

1. Introduction 

This article explores the implementation of statistical processes and high 
performance computing, such as Independent Component Analysis (ICA) [13] and 
emergent computing algorithms, specifically Support Vector Machines (SVM) as a 
computational process to modeling time series. The particular application of this 
research will focus on modeling the flow variation of watersheds, considering the 
importance that this type of tool has on the problem of environmental conservation [8], 
[10], and hydroelectric power generation [4]. Caroni River´s basin is the most 
strategically important one in Venezuela, in which Guri hydroelectric plant is located; 
Guri plant is the biggest in Venezuela and one of the largest in the world. Guri plant, 
belonging to the state hydroelectric generation company CVG-EDELCA, supplies more 
than 65% of the total energy consumed in the country and over 80% of hydropower 
generated in Venezuela [4]. Given the vital importance to the nation, CVG-EDELCA 
has a permanent monitoring of the basin’s flow, and consequently has a period of 
relatively long hydrological records. A model of Caroni River’s flow hydrological time 
series is presented in this research. It consists of daily records covering a period 
between 1952 and 2003. This model is based on a nonlinear autoregressive structure, 
implemented using a SVM, whose inputs are the independent components obtained 
from the application of ICA algorithm to the time series above. In [9] the same time 
series are modeled using the classical linear statistical model ARIMA. SVM are 
algorithms of emergent computation developed by Vapnik and coworkers [28] who 
have demonstrated outstanding performance in applications of regression of nonlinear 
time series of physiological [16], [17] and hydrology [3] signals. On the other hand, 
ICA has been used in problems of predicting financial time series based on regression 
using artificial neural networks (ANN) [6]. 
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2. Theoretical fundaments 

2.1 Regression using SVM 

A SVM used as a regressor or SVR (Support Vector Regression) estimates a non-linear 
function using a set of linear functions defined in a hiperdimensional space. That is, for 
a set of data points ( ){ }n

i i i
G x ,d=  (where xi is the input vector, di is the expected output 

and n is the number of data patterns), SVR approximates the regression function using: 

( ) ( ) bxwxfy +== φ                             (1) 

φ(x) is the hiperdimensional feature space where input space x is nonlinearly 
mapped. Coefficients w and b are estimated minimizing: 
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where Ls is the linear ε-insensitive loss function 
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In the loss function given by (2), the term ( ) ( )∑
=

n

1i
iiε y,dLn1C  is the empirical (risk) error 

while the term (1/2).||w2|| is the regularization term. Parameter C is known as 
regularized constant or capacity of the SVM and determines the trade-off between the 
empirical risk and the regularization term. In (3), ε is known as size of the 
hyperdimensional cylinder that wraps the function and is equivalent to the 
approximation accuracy on the training data points. C and ε are parameters to be set by 
the designer in a tuning process during the training stage of the SVM. 

To obtain the estimates of w and b, (2) is transformed to (4), using slack variables iξ  
y ( )*

iξ  that represents upper and lower limits in the system output as shown in Fig. 2, 
that is, minimizing:  
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subject to constraints: 
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Figure 1.  Pre-established error ε and limits ξ in the ε-insensitive function 

Finally introducing the Lagrange multipliers αi y αi
* [28], the regression function (1) is 

transformed as indicated in (6): 
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( )ji,xxK  is termed kernel function and αi y αi
* are the Lagrange multipliers meeting the 
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maximizing the dual function of (6) having the form: 
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Only one certain number of these Lagrange multipliers, based on the Karush-
Kuhn-Tucker (KKT) [28] quadratic programming conditions, will have values nonzero 
and the points or vector associated with them will have errors equal or greater than ε, 
these data points are called support vectors. It is evident from (6) that these support 
vectors define f(x). 

Kernel function is equal to inner product of two vectors xi and xj in the feature space 
φ(xi) and φ(xi), this is: ( ) ( ) ( )jiji xxxx φφ ∗=,K . The advantage of using kernel function, the 

computation is done in an arbitrary feature space without explicitly using φ(x). Any 
function that satisfies the Mercer’s conditions [2] is candidate to be a kernel function, 
among which can mention, polynomial functions of the form K(x,y) = (x*y + 1)d,  
where d is the polynomial degree, Gaussian K(x,y) = exp(-1/σ2(x – y)2), where σ is the 
widespread coefficient of the Gaussian, also known as radial basis function (RBF). 

 

2.2 Independent Components Analysis 

Given a set of N independent components sj linear and non-overlapping Gaussian: 

௝ݔ ൌ ௝ܽଵݏଵ ൅ ௝ܽଶݏଶ ൅ ൅ڮ ௝ܽ௡ݏ௡, ݆ ൌ 1,… , ܰ,    (8) 
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where it is assumed that each xj (t) as well as each independent component si(t) are 
samples of the corresponding random variables, a function of time, with zero mean. 

           Let be X, called mixed vector, the vector composed of random vectors xj 
consisting of the superposition of random variables S, called source vector, consisting 
of random vectors si. Then the matrix model to all the following equation: 

X = A.S         (9) 

The above equation is known as Independent Component Analysis or ICA [13]. The 
problem is to find A and S from X, where it is assumed that S is independent and non-
Gaussian distribution. The condition of non-Gaussian can be determined using higher 
order statistics (HOSA); in [18] it shows a "toolbox" for processing HOSA implemented 
in Matlab. Get "whitening" of the eigenvalues of covariance matrix: 

܂܄۲܄ ൌ  ൧ ,       (10)܂෡܆෡܆۳ൣ

where V is the matrix of orthogonal eigenvectors and D the diagonal matrix of 
corresponding eigenvalues. The "whitening" is achieved by multiplication with the 
transformation matrix P: 

෤ܠ ൌ   ොܠ۾

۾ ൌ  (11)        ,܂܄۲ି૚૛܄

Matrix to extract the independent components of x is W where: 

܅ ൌ      ۾෩܅       (12) 

 
2.3 Gaussian and linear test 

The Hinich algorithm [18] is a statistic test to verify signal linearity and/or 
Gaussian condition in signals. The mentioned algorithm is based on the detection of non 
skewness. It is basically supported on the fact that in a Gaussian process the cumulants 
whose order is higher than two are nil, hence the bi-spectre and the corresponding bi-
coherence. Then, the null hypothesis of no Gaussian condition is established if the bi-
specter is not zero. On the other hand, if the bi-coherence is not constant, it must be 
concluded that the process is non linear. A toolbox of free use (HOSA [18]), developed 
under mathematic software Matlab, implements the Hinich algorithm (“glstat” routine) 
by obtaining non biased consistent estimates of the bi-coherence, that is: 

 
 
 

             |ܾଓ̂ܿ௫௫௫ሺ ଵ݂, ଶ݂ሻ|ଶ ൌ
หௌመ௖ೣೣೣሺ௙భ,௙మሻห

మ

ௌమೣሺ௙భା௙మሻௌమೣሺ௙భሻௌమೣሺ ௙మሻ
                           (13)  
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3. Methodology and result analysis 

  This paragraph describes the methodology used to describe the time series 
designed by the daily flow of Caroni River, between 1952 and 2002. First, the 
nonexistent linearity and Gaussian condition of the series are determined. Then there is 
a segmenting of the series to get sub-series which exhibit linearity and non Gaussian 
condition. Third, these auto-regressive high order (10 is used as the initial pivotal value) 
term matrices are transformed (AR(p) model) due to the fact that the adequate model 
order has not  yet been identified, so that they could be processed by ICA.  Lastly, an 
AR(p) model [9] is developed, based on SVR. The inlet training matrix is formed by 
auto-regressive components derived from the independent components, and the 
objective vector is constituted by the future values (index: p+1) of the variable to be 
produced. 

  
3.1 Time series 

The time series to be analyzed is composed by daily hydrometric data registered 
between 1952 and 2002, on the flow of Caroní River basin, located to the South-West of 
Venezuela in Bolívar State. This basin feeds Guri dam, the main source of hydroelectric 
energy in Venezuela. The geographic coordinates are 3o 40’ and 8o 40’ N, 60o 50’ and 
64o 10’ W and it has an extension of 96,000 Km2. Figure 1 shows a Venezuelan map, 
locating the region where Caroní River basin is [16]. 

   

Figure 2. Location of Caroní River basin. (source: EDELCA 2004 [8])  

The registered data show the daily flow between 1952 and 2002, which is a time 
series composed by 6,050 points with a daily frequency (dimension vector: 6206 X 1). 
Figure 2 shows the series under study. 
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Figure 3. Daily flow of Caroní River basin 

3.2  Processing 

  The time series was pre-processed taking its mean and normalizing its variance 
to the unit. Then, it was segmented in sub-series, using Hinich test [6]. The procedure is 
shown in Table 1. The mentioned procedure was applied to 50 sub-series having 1000 
samples, in overlapping segments and already normalized. 

 
Table 1. Gaussian and linearity test on time series 

G df pfa 
127.93±43.52 36 0

Rest λ Rtheory
7.47 5.52 6.51 

 
This table summarizes, in the upper row, statistics of the Gaussian index, G, the 

degrees of freedom of the distribution χ2, and predicted false alarm (p.f.a). The lower 
row contains the linearity test (“glstat” routine, toolbox HOSA [6]). The results show 
that the selected segments are non Gaussian and come from a linear system excited by 
white noise. 

 
3.3  Organization of data 

  The processed sub-series are organized as auto-regressive arrangements AR(p). 
The order p of the model that best represents any of the sub-series is not known at this 
point of the process. Therefore, a high order is assumed, as a pivotal element (in this 
case p=10 was used as pivot value). 
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3.4 ICA 

  Using toolbox FASTICAG (free academic use) [13], the initial ICA process of 
extraction of the eigenvector matrix was carried out (“Singular Value Decomposition”, 
SVD [6]). The corresponding eigenvalues allowed the reduction of dimensionality of 
matrices in process, neglecting those of low power. Figure 3 shows that a 
dimensionality of order 3 retains almost all the signal power expressed in the first three 
self-values, so the order p=3 will be considered for the auto-regressive matrix model. 

 

Figure 3. ICA eigenvalues 

Figure 4 shows the three main components identified in the ICA process.  

 

Figure 4. Source signals identified by ICA 

4.5  SVR 

  Each matrix of order L x p (L: serie length - p), that belongs to each sub-series 
and obtained in the above step gave origin to two new matrices. These two new 
matrices contain 80% and 20% of randomly chosen rows (function “divideran”, statistic 
toolbox-Matlab [19]); theses matrices are used as training and validation matrices, 
respectively, for SVR.  The objective vector is the column vector concerning self-
regressive terms constituted by the next value in the series o value to forecast, i.e. the 
forecasting horizon is established a step ahead. The tuning of the implemented SVR 
[21] concluded that the best performance kernel function was the radial base function 
(rbf), having similar parameters shown in the next table. FMSE (Forecasting Mean 
Square Error) is lower than other models of the same time series, implemented using 
ARIMA [9].  

 
Table 2.  Tuning parameters of SVR 

σ C ε Te (sec) NVS FMSE 
2.0 102 10-1 87.2 437 7.8832 
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A comparative graph on the validation series vs. the simulation created by SVR is 
shown in Figure 5. This figure shows the approximation of SVR model to the series of 
validation data from the original processed series. 

 

Figure 5. SVR vs. validation data 

CONCLUSIONS:  

The behavior of non Gaussian of time series was verified. Such series were 
derived from hydrographic records, hence the application of ICA to determine data to 
build training SVR matrices and implement self-regressive non linear models, NARMA 
type. The implemented SVR demonstrated a satisfactory behavior as backward agent, 
factor that shows the possibility of application of SVR in the modeling of hydrographic 
series. The best kernel function behavior occurred in the radial type function. The 
results shown in this paper supports the development of new accurate computing tools 
for forecasting hydrologic time series. 
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