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Abstract

We provide a formal definition of the notion of “transportability,” or “external validity,” as a
license to transfer causal information from experimental studies to a different population in which
only observational studies can be conducted. We introduce a formal representation called “selection
diagrams” for expressing differences and commonalities between populations of interest and, using
this representation, we derive procedures for deciding whether causal effects in the target population
can be inferred from experimental findings in a different population. When the answer is affirmative,
the procedures identify the set of experimental and observational studies that need be conducted to
license the transport.

Introduction

Science is about generalization; conclusions that are obtained in a laboratory setting are trans-
ported and applied elsewhere, in an environment that differs in many aspects from that of the labo-
ratory.

If the target environment is arbitrary, or drastically different from the study environment noth-
ing can be learned from the latter. However, the fact that most experiments are conducted with
the intention of applying the results elsewhere means that we usually deem the target environment
sufficiently similar to the study environment to justify the transport of experimental results or their
ramifications.

Remarkably, the conditions that permit such transport have not received systematic formal
treatment. The standard literature on this topic, falling under rubrics such as “quasi-experiments,”
“meta analysis,” and “external validity,” consists primarily of “threats,” namely, verbal narratives of
what can go wrong when we try to transport results from one study to another (e.g., [SCC02, chapter
3]; [Man07]). In contrast, we seek to establish “licensing assumptions,” namely, formal conditions
under which the transport of results across diverse environments is licensed from first principles.

Transportability analysis requires a formal language within which the notion of “environment”
or “population” is given precise characterization, and differences among populations can be encoded
and analyzed. The advent of causal diagrams [Pea95, SGS00, Pea09] provides such a language and
renders the formalization of transportability possible. Using this language, this paper offers a precise
definition for the notion of transportability and establishes formal conditions that, if held true, would
permit us to transport results across studies, domains, environments, or populations.
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Figure 1: Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z represents
“linguistic skills” while age (hollow circle) is unmeasured. In (c) Z represents a biological marker
situated between the treatment (X) and a disease (Y ).

Motivating Examples

To motivate our discussion and to demonstrate some of the subtle questions that transportability
entails, we will consider three simple examples, graphically depicted in Fig. 1.

Example 1 We conduct a randomized trial in Los Angeles (LA) and estimate the causal effect of
treatment X on outcome Y for every age group Z = z as depicted in Fig. 1(a). We now wish to
generalize the results to the population of New York City (NYC), but we find that the distribution
P (x, y, z) in LA is different from the one in NYC (call the latter P ∗(x, y, z)). In particular, the
average age in NYC is significantly higher than that in LA. How are we to estimate the causal effect
of X on Y in NYC, denoted P ∗(y|do(x)).1

If we can assume that age-specific effects P (y|do(x), Z = z) are invariant across cities , the overall
causal effect in NYC should be

(1) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z)

This transport formula combines experimental results obtained in LA, P (y|do(x), z), with observational
aspects of NYC population, P ∗(z), to obtain an experimental claim P ∗(y|do(x)) about NYC.

Our first task in this paper will be to explicate the assumptions that renders this extrapolation
valid. We ask, for example, what must we assume about other confounding variables beside age, both
latent and observed, for Eq. (1) to be valid, or, would the same transport formula hold if Z was not
age, but some proxy for age, say, language proficiency. More intricate yet, what if Z stood for an
X-dependent variable, say hyper-tension level, that stands between X and Y ? Let us examine the
proxy issue first.

Example 2 Let the variable Z in Example 1 stand for subjects language skills, which correlates with
age (not measured) (see Fig. 1(b)). Given the observed disparity P (z) 6= P ∗(z), how are we to estimate
the causal effect P ∗(y|do(x)) in NYC from the z-specific causal effect P (y|do(x), z) estimated in LA?

If the two cities enjoy identical age distributions and NYC residents acquire linguistic skills at a
younger age, then, since Z has no effect whatsoever on X and Y , the inequality P (z) 6= P ∗(z) can be
ignored and, intuitively, the proper transport formula should be

(2) P ∗(y|do(x)) = P (y|do(x))
1The do(x) notation [Pea95, Pea09] interprets P (y|do(x)) as the probability of outcomes Y = y in a randomized

experiment where the treatment variables X take on values X = x. P (y|do(x), z) is logically equivalent to P (Yx =
y|Zx = z) in counterfactual notation. Likewise, the diagrams used in this paper should be interpreted as parsimonious
encoding of the data generating model [Pea09, p. 101], where every bi-directed arc X L9999K Y stands for a set of latent
variables affecting X and Y .
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If, on the other hand, the conditional probabilities P (z|age) and P ∗(z|age) are the same in both cities,
and the inequality P (z) 6= P ∗(z) reflects genuine age differences, Eq. (2) is no longer valid, since the
age difference may be a critical factor in determining how people react to X. We see, therefore, that
the transport formula depends on the causal context in which distributional differences are embedded.

This example also demonstrates why the invariance of Z-specific causal effects should not be
taken for granted. While justified in Example 1, with Z = age, it fails in Example 2, in which Z was
equated with “language skills.” Indeed, using Fig. 1(b) for guidance, the Z-specific effect of X on Y

in NYC is given by:

P ∗(y|do(x), z) =
∑
age

P (y|do(x), age)P ∗(age|z)(3)

Thus, if the two populations differ in the relation between age and skill, i.e.,P (age|z) 6= P ∗(age|z) the
skill-specific causal effect would differ as well.

Example 3 Examine the case where Z is a X-dependent variable, say a disease bio-marker as shown
in Fig. 1(c). Assume further that the disparity P (z) 6= P ∗(z) is discovered in each level of X and
that, again, both the average and the z-specific causal effect P (y|do(x), z) are estimated in the LA
experiment, for all levels of X and Z. Can we, based on information given, estimate the average
causal effect in NYC?

Here, Eq. (1) is wrong for two reasons. First, as in the case of age-proxy, it matters whether the
disparity in P (z) represents differences in susceptibility to X or differences in propensity to receiving
X. In the latter case, Eq. (2) would be valid, while in the former, more information is needed. Second,
the overall causal effect is no longer a simple average of the z-specific causal effects but is given by

P ∗(y|do(x)) =
∑

z

P ∗(y|do(x), z)P ∗(z|do(x))(4)

which reduces to (1) only in the special case where Z is unaffected by X, as is the case in Fig. 1(a).
We shall see (Theorem 3 below) that the correct transport formula is

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x)(5)

which calls for weighting the z-specific effects by P ∗(z|x), to be estimated at the target environment.

Formalizing Transportability

Selection Diagrams and Selection Variables

The examples above demonstrate that transportability is a causal, not statistical notion, requir-
ing knowledge of the mechanisms, or processes, through which differences come about. To witness,
every probability distribution P (x, y, z) that is compatible with the process of Fig. 1(b) is also com-
patible with that of Fig. 1(a) and, yet, the two processes dictate different transport formulas. Thus,
to represent formally the differences between populations we must resort to a representation in which
the causal mechanisms are explicitly encoded and in which population differences are represented as
local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection variables,” where
each member of S corresponds to a mechanism by which the two populations differ, and switching
between the two populations will be represented by conditioning on different values of these S variables.
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Figure 2: Selection diagrams depicting Examples 1–3. In (a) the two populations differ in age distri-
butions. In (b) the populations differs in how Z depends on age (an unmeasured variable, represented
by the hollow circle) and the age distributions are the same. In (c) the populations differ in how Z
depends on X.

Formally, if P (v|do(x)) stands for the distribution of a set V of variables in the experimental
study (with X randomized) then we designate by P ∗(v|do(x)) the distribution of V if we were to
conduct the study on population Π∗ instead of Π. We now attribute the difference between the two
to the action of a set S of selection variables, and write2

P ∗(v|do(x)) = P (v|do(x), s∗).

Of equal importance is the absence of an S variable pointing to Y in Fig. 2(a), which encodes the
assumption that age-specific effects are invariant across the two populations.

The variables in S represent exogenous conditions that determine the values of the variables to
which they point.3

For example, the age disparity P (z) 6= P ∗(z) discussed in Example 1 will be represented by the
inequality P (z) 6= P (z|s) where S stands for all factors determining age differences between NYC and
LA.

This graphical representation, which we will call “selection diagrams” can also represent struc-
tural differences between the two populations. For example, if the causal diagram of the study pop-
ulation contains an arrow between X and Y , and the one for the target population contains no such
arrow, the selection diagram will be X → Y ← S where the role of variable S is to disable the arrow
X → Y when S = s∗ (i.e., P (y|x, s∗) = P (y|x′, s∗) for all x′) and reinstate it when S = s.4 Our
analysis will apply therefore to all factors by which populations may differ or that may “threaten” the
transport of conclusions between studies, populations, locations or environments.

For clarity, we will represent the S variables by squares, as in Fig. 2, which uses selection
diagrams to encode the three examples discussed above. In particular, Fig. 2(a) and 2(b) represent,
respectively, two different mechanisms responsible for the observed disparity P (z) 6= P ∗(z). The first
(Fig. 2(a)) dictates transport formula (1) while the second (Fig. 2(b)) calls for direct, unadjusted
transport (2).

In the extreme case, we could add selection nodes to all variables, which means that we have no
reason to believe that the two populations share any mechanism in common, and this, of course would
inhibit any exchange of conclusions between the two. Conversely, absence of a selection node pointing

2Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and P (v|do(x), s∗), respectively.
The results, however, will be the same, since only the location of S enters the analysis.

3Elsewhere, we analyze S variables representing selection of units into the study pool [BP11]; there, the arrows will
be pointing towards S.

4[[Pea95, Pea09, p. 71]] and [Daw02], for example, use conditioning on auxiliary variables to switch between experi-
mental and observational studies. [Daw02] further uses such variables to represent changes in parameters of probability
distributions.
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to a variable, say Z, represents an assumption of invariance: the local mechanism that assigns values
to Z is the same in both populations.

Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing the concepts
of intervention, do-calculus5 and identifiability [Pea09, p. 77] we give the notion of transportability a
formal definition.

Definition 1 (Transportability)
Given two populations, denoted Π and Π∗, characterized by probability distributions P and P ∗, and
causal diagrams G and G∗, respectively, a causal relation R is said to be transportable from Π to Π∗ if
R(Π) is estimable from the set I of interventions on Π, and R(Π∗) is identified from {P, P ∗, I, G, G∗}.

Definition 1 provides a declarative characterization of transportability which, in theory, requires one to
demonstrate the non-existence of two competing models, agreeing on {P, P ∗, I, G, G∗}, and disagreeing
on R(Π∗). Such demonstrations are extremely cumbersome for reasonably sized models, and we seek
therefore procedural criteria which, given the pair (G, G∗) will decide the transportability of any
given relation directly from the structures of G and G∗. Such criteria will be developed in the sequel
by breaking down a complex relation R into more elementary relations whose transportability can
immediately be recognized. We will formalize the structure of this procedure in Theorem 1, followed
by Definitions 2 and 3 below, which will identify two special cases where transportability is immediately
recognizable.

Theorem 1 ([PB11a, PB11b]) Let D be the selection diagram characterizing Π and Π∗, and S a
set of selection variables in D. The relation R = P (y|do(x), z) is transportable from Π to Π∗ if and
only if the expression P (y|do(x), z, s) is reducible, using the rules of do-calculus (Appendix 1), to an
expression in which S appears only as a conditioning variable in do-free terms.

Definition 2 (Direct Transportability)
A causal relation R is said to be directly transportable from Π to Π∗, if R(Π∗) = R(Π).

The equality R(Π∗) = R(Π) means that R retains its validity without adjustment, as in Eq. (2). A
graphical test for direct transportability of P (y|do(x)) follows immediately from do-calculus (Appendix
1) and reads: (S ⊥⊥ Y |X)GX

; i.e., X blocks all paths from S to Y once we remove all arrows pointing
to X. Indeed, such condition would allow us to eliminate S from the do-expression, and write:

R(Π∗) = P (y|do(x), s) = P (y|do(x)) = R(Π)

Example 4 Figure 4(a) represents a simple example of direct transportability. Indeed, since S merely
changes the mechanism by which the value X = x is selected (sometimes called “treatment assignment
mechanism”), it does not change any causal effect of X [Pea09, pp. 72–73].

Definition 3 (Trivial Transportability)
A causal relation R is said to be trivially transportable from Π to Π∗, if R(Π∗) is identifiable from
(G∗, P ∗).

5The three rules of do-calculus are illustrated in graphical details in [Pea09, p. 87] (See Appendix 1).
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Figure 3: Selection diagrams illustrating S-admissibility. (a) has no S-admissible set while in (b), W
is S-admissible.
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Figure 4: Selection diagrams illustrating transportability. The causal effect P (y|do(x)) is (trivially)
transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e) (see Corollary 2 and
Example 9).

This criterion amounts to ordinary (nonparametric) identifiability of causal relations using graphs
[Pea09, p. 77]. It permits us to estimate R(Π∗) directly from passive observations on Π∗, un-aided by
causal information from Π.

Example 5 Let R be the causal effect P (y|do(x)) and let the selection diagram be X → Y ← S, then
R is trivially transportable, since R(Π∗) = P ∗(y|x).

Example 6 Let R be the causal effect P (y|do(x)) and let the selection diagram of Π and Π∗ be X →
Y ← S, with X and Y confounded as in Fig. 4(b), then R is not transportable, because P ∗(y|do(x)) =
P (y|do(x), s) cannot be decomposed into s-free or do-free expressions using do-calculus. This is the
smallest graph for which the causal effect is non-transportable.

Transportability of Causal Effects: A Graphical Criterion

We now state and prove two theorems that permit us to decide algorithmically, given a selection
diagram, whether a relation is transportable between two populations, and what the transport formula
should be.

Theorem 2 ([PB11a, PB11b]) Let D be the selection diagram characterizing Π and Π∗, and S the
set of selection variables in D. The z-specific causal effect P (y|do(x), z) is transportable from Π to Π∗

if Z d-separates Y from S in the X-manipulated version of D, that is, Z satisfies (Y ⊥⊥ S|Z)DX
.

Definition 4 (S-admissibility)
A set T of variables satisfying (Y ⊥⊥ S|T ) in DX will be called S-admissible.
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Figure 5: Selection diagram in which the causal effect is shown to be transportable in two iterations
of Theorem 3.

Corollary 1 ([PB11a, PB11b]) The average causal effect P (y|do(x)) is transportable from Π to
Π∗ if there exists a set Z of observed pre-treatment covariates that is S-admissible. Moreover, the
transport formula is given by the weighting of Eq. (1).

Example 7 The causal effect is transportable in Fig. 2(a), since Z is S-admissible, and directly
transportable in Fig. 2(b) and 4(a), where the empty set is S-admissible. It is also transportable in
Fig. 3(b), where W is S-admissible, but not in Fig. 3(a) where no S-admissible set exists.

Contrasting the diagrams in Figs. 2(a) and 3(a), we witness again the crucial role of causal knowledge
in facilitating transportability. These two diagrams are statistically indistinguishable in both the study
and target populations, yet the former is transportable, while the latter is not.

Corollary 2 ([PB11a, PB11b]) Any S variable that is pointing directly into X as in Fig. 4(a), or
that is d-connected to Y only through X can be ignored.

We now generalize Theorem 2 to cases involving X-dependent Z variables, as in Fig. 2(c).

Theorem 3 ([PB11a, PB11b]) The causal effect P (y|do(x)) is transportable from Π to Π∗ if any
one of the following conditions holds

1. P (y|do(x)) is trivially transportable

2. There exists a set of covariates, Z (possibly affected by X) such that Z is S-admissible and for
which P (z|do(x)) is transportable

3. There exists a set of covariates, W that satisfy (X ⊥⊥ Y |W,S)D and for which P (w|do(x)) is
transportable.

Remark.
The test entailed by Theorem 3 is recursive, since the transportability of one causal effect depends on
that of another. However, given that the diagram is finite and feedback-free, the sets Z and W needed
in conditions 2 and 3 would become closer and closer to X, and the iterative process will terminate
after a finite number of steps. Still, Theorem 3 is not complete, as shown in [PB11a].

Example 8 Applying Theorem 3 to Fig. 2(c), we conclude that R = P (y|do(x)) is trivially trans-
portable, for it is identifiable in Π∗ through the front-door criterion [Pea09]. R is likewise (trivially)
transportable in Fig. 4(c) (by the back-door criterion). R is not transportable however in Fig. 3(a),
where no S-admissible set exists.
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Example 9 Fig. 4(d) requires that we invoke both conditions of Theorem 3, iteratively, and yields
transport formula (see [PB11a]):

(6) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑
w

P (w|do(x))P ∗(z|w)

The first two factors on the right are estimable in the experimental population, and the third in the ob-
servational side. Surprisingly, the joint effect P (y, w, z|do(x)) need not be estimated in the experiment;
a decomposition that results in improved estimation power.

A similar analysis applies to Fig. 4(e).
The model of Fig. 4(f) however does not allow for the transportability of P (y|do(x)) because

there is no S-admissible set in the diagram and condition 3 of Theorem 3 cannot be invoked.

Example 10 Fig. 5 represents a more challenging selection diagram, which requires several iterations
to discern transportability, and yields (see [PB11a]):

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑
w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)(7)

The main power of this formula is to guide the learning agent in deciding what measurements need
be taken in each population. It asserts, for example, that variables U and V need not be measured,
that the W -specific causal effects need not be learned in the experiment and only the conditional
probabilities P ∗(z|w) and P ∗(t) need be learned in the target population.

Conclusions

Given judgmental assessments of how target populations may differ from those under study,
the paper offers a formal representational language for making these assessments precise and for
deciding whether causal relations in the target population can be inferred from experiments conducted
elsewhere. When such inference is possible, the criteria provided by Theorems 1-3 yield transport
formulae, namely, principled ways of recalibrating the learned relations so as to account for differences
in the populations. These formulae enable the learner to select the essential measurements in both the
experimental and observational studies, and thus minimize measurement costs and sample variability.

Extending these results to observational studies, [PB11a] showed that there is also benefit in
transporting statistical findings from one population to another in that it enables learners to avoid
repeated measurements that are not absolutely necessary for reconstructing the relation transferred.
Procedures for deciding whether such reconstruction is feasible when certain re-measurements are for-
bidden or too costly were shown capable of substantial savings in sample size or increase in estimation
power.

A second extension of transportability analysis led to a causally principled definition of “surro-
gate endpoint,” namely, a variable Z such that knowing the effect of treatment on Z allows predictions
of the effect of X on the more clinically relevant outcome Y [JG09]. [PB11a] have argued that a surro-
gate should serve not merely as a good predictor of outcomes, but also as a robust predictor of effects
in the face of changing external conditions. Therefore, any formal definition of surrogacy must make
change in conditions an integral part of the definition. 6 Accordingly, Z is defined as a surrogate of
Y if observation of Z in Π∗ enables the effect of X on Y to be transported from Π to Π∗ without

6Traditional definitions of surrogacy [Pre89] as well as those based on “principal strata” [FR02] lack this feature and
are, therefore, inadequate [Pea11].
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re-measurement of Y and regardless of the mechanism responsible for variations in Z. The procedure
developed from this transportability-based definition allows for the identification of valid surrogates
in a complex set of causal relations.

Our analysis is based on the assumption that the investigator is in possession of sufficient
knowledge to determine, at least qualitatively, where two populations may differ. In practice, such
knowledge may only be partially available and, as is the case in every mathematical exercise, the benefit
of the analysis lies primarily in understanding what knowledge is needed for the task to succeed and
how sensitive conclusions are to knowledge that we do not possess.

Appendix 1

The do-calculus [Pea95] consists of three rules that permit us to transform expressions involving
do-operators into other expressions of this type, whenever certain conditions hold in the causal diagram
G. (See footnote 1 for semantics.)

We consider a DAG G representing the data-generating model, in which each child-parent family
represents a deterministic function xi = fi(pai, εi), where pai are the parents of Xi in G; and εi, i =
1, . . . , n are arbitrarily distributed random disturbances, representing factors that the investigator
chooses not to include in the analysis.

Let X, Y , and Z be arbitrary disjoint sets of nodes in a causal DAG G. An expression of the
type E = P (y|do(x), z) is said to be compatible with G if the interventional distribution described by
E can be generated by parameterizing the graph with a set of functions fi and a set of distributions
of the random disturbances εi, i = 1, . . . , n.

We denote by GX the graph obtained by deleting from G all arrows pointing to nodes in X.
Likewise, we denote by GX the graph obtained by deleting from G all arrows emerging from nodes in
X. To represent the deletion of both incoming and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interventional distribution compatible with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X, W )GX

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X, WGXZ

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X, W )G
XZ(W )

,

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX . The do-calculus was
proven to be complete [SP06].
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