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1 Introduction

Ion channels are protein molecules embedded in cell membranes. They are fundamental units of the

nervous system and contain aqueous pores that may be open or closed. When open, ion channels permit

selective flow of ions across the membrane. An understanding of the processes governing opening and

closing of ion channels provides important insights into diseases caused by channel disorders, the

modes of actions of drugs (for example local anaesthetics) which perturb ion channels and hence the

rational design of drugs acting on a nervous system.

The patch clamp technique enables the experimenter to record the current flowing across a single

ion channel. Over the past 30–35 years, there has been considerable interest in the development and

analysis of stochastic models to describe the opening and closing of ion channels, and in methods of

inference for such models; see, for example, Sakmann and Neher (1995) and Hawkes (2005).

The gating mechanism of a single ion channel is usually modelled as a finite state continuous-time

Markov chain. The state space is partitioned into two classes, termed open and closed, corresponding

to the receptor channel being open or closed, and it is possible to observe only which class, rather than

which state, the process is in. A consequence of this aggregation of states is that distinct underlying

processes may be equivalent, in that they yield probabilistically indistinguishable aggregated processes.

Single-channel models are usually specified in terms of a kinetic scheme which gives the allowable

transitions between states. The above equivalence means that (i) a scheme may be unidentifiable,

in that there exist equivalent models that satisfy the constraints imposed by the scheme, and (ii)

two distinct schemes may be indistinguishable, in that there exist models from the two schemes that

are equivalent. Experimenters often wish to discriminate between rival schemes, which have different

biophysical interpretations, and it is important to know whether or not this is in principle possible

and also whether a given scheme is identifiable.

In this paper, we give a brief introduction to ion channel modelling and associated identifiability

problems. We also outline a method (described in detail in Ball et al. (2011)) for investigating

identifiability and distinguishability of a range of practically relevant single-channel gating schemes,

together with its application to schemes that have been proposed for glycine receptor channels.

2 Models and inference

We assume that the gating behaviour of a single ion channel is modelled as an irreducible continuous-

time Markov chain {X(t)} = {X(t) : t ≥ 0}, with finite state space E = {1, 2, . . . , n} and transition-

rate matrix Q = [qij ]. Thus, qij , for i 6= j, is the transition rate of the channel from state i to

state j, and qii = −
∑

j 6=i qij . The state space E is partitioned into O = {1, 2, . . . , nO} and C =

{nO + 1, nO + 2, . . . , n}, which are respectively classes of nO open states and nC (= n − nO) closed

states, and at any given time it is possible to observe only which class of states the channel is in.

A single-channel model of this type is usually specified by a kinetic scheme, which indicates the

allowable transitions between states (i.e. which off-diagonal qij may be non-zero). Sometimes the qij

for allowable transitions are functions of parameters, having biophysical meaning; see, for example,
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Figure 1, which gives two such kinetic schemes that have been considered by Burzomanto et al. (2004)

for a single heteromeric α1β glycine receptor channel. In both of these schemes, the 3 states indexed

with an asterisk are open and the other 7 states are closed. Further, a denotes concentration of the

agonist glycine, which is controlled in experiments, and all other quantities are parameters which need

to be estimated. See Burzomanto et al. (2004) for further details, including the biophysical rationale

behind the two models and interpretation of the parameters.
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Figure 1: Models for glycine receptor channel.

Let π = (π1, π2, . . . , πn) denote the equilibrium distribution of {X(t)}. Partition

(1) Q =

[

QOO QOC

QCO QCC

]

and π = (πO, πC)

in the obvious fashion.

Suppose that X(0) ∈ O and let TO = min{t > 0 : X(t) ∈ C} denote the time that the channel

first enters the closed class of states. Then TO has (matrix) probability density function (pdf) given

by

(2) fOC(t) = exp(QOOt)QOC (t > 0) ,

where fOC(t) = [fOC
ij (t)] with

fOC
ij (t) =

d

dt
P (TO ≤ t and X(TO) = j | X(0) = i) (i ∈ O, j ∈ C) ;

see, for example, Colquhoun and Hawkes (1977). Define fCO(s) = exp(QCCs)QCO (s > 0) similarly

for closed sojourns.

Let πO = (πO
1

, πO
2

, . . . , πO
nO

), where, for i = 1, 2, . . . , nO, πO
i is the equilibrium probability that

an open sojourn of the channel begins in state i. Then, as shown for example in Colquhoun and

Hawkes (1977), πO = πCQCO/πCQCO1. (Throughout the paper 1 denotes a column vectors of ones,

whose dimension, in the present case nO, is apparent from the context.) Define πC similarly for closed

sojourns.

Suppose that the channel is in equilibrium and a sequence t1, s1, t2, s2, . . . , tm, sm of successive

open and closed sojourns is observed, starting with an open sojourn. Then, see Fredkin et al. (1985),

the likelihood of these data is given by

(3) L(Q) = πO

[

m
∏

i=1

{fOC(ti)fCO(si)}

]

1
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and Q, or the parameters governing Q, can in principle be estimated, for example by maximum

likelihood (see, for example, Ball and Sansom (1989)).

In practice, the current flowing across a single ion channel is recorded using the patch clamp

technique. Moreover, the record is corrupted by noise and low-pass filtering, and is sampled at finite

intervals. The sequence of open and closed sojourns of the channel is then reconstructed, often using

some kind of threshold-crossing algorithm. Such a reconstruction results in the loss of very brief

sojourns in either the open or closed classes of states. This phenomenon is known as time interval

omission and is usually modelled by assuming that any open or closed sojourn of {X(t)} having length

less than some (assumed known) critical value τ fails to be detected. Thus, for example, an observed

open sojourn commences with an actual open sojourn of length at least τ , which is followed by a

number of pairs of closed and open sojourns with the closed sojourns all having length less than τ ,

and terminates as soon as there is a closed sojourn of length at least τ .

Suppose that the channel is in equilibrium and t1, s1, t2, s2, . . . , tm, sm is now a sequence of

successive observed open and closed sojourns. Then the likelihood is given by (3) but with πO, fOC and

fCO replaced by their time interval omission counterparts π̃O, f̃OC and f̃CO, respectively. Although

calculation of π̃O is straightforward, calculation of f̃OC and f̃CO is considerably more difficult. A

recursive exact expression is available for f̃OC(t) (and hence also for f̃CO(s)), but it can be numerically

unstable for large values of t. However, an asymptotic approximation is available, which turns out to

be very good, even for small values of t (of the order of 2τ or 3τ), for which the exact expression can

be evaluated accurately. Thus f̃OC and f̃CO can be evaluated using a combination of the exact and

asymptotic expressions; see Hawkes et al. (1992) for details.

Another difficulty is that there there may be more than one channel contributing to a recording.

However, channel recordings often show periods of repetitive open activity, known as bursts, which

are noticeably separated from other such periods. This may be modelled by specifying a critical time

tcrit and classifying any observed closed sojourn as short (≤ tcrit) or long (> tcrit). The long observed

closed sojourns are then used to partition the channel record into bursts. One can usually be almost

certain that activity within a burst comes from a single channel, so only information from within

bursts is used to calculate the likelihood. See Colquhoun et al. (1996), (2003) for further details and

examples of such inference, and Burzomanto et al. (2004) for application of these methods to glycine

channels, including estimation of the parameters in the two models in Figure 1.

An attractive alternative to using sojourn time reconstructions is to base inference directly on

the current record and several authors have developed such methodology; see, for example, Fredkin

and Rice (1992), (2001), who use likelihood-based hidden-Markov techniques, and Ball et al. (1999),

de Gunst et al. (2001) and Gin et al. (2009), who use Bayesian Markov chain Monte Carlo methods.

3 Identifiability

Suppose that the single-channel process {X(t)} is in equilibrium. Let fO(t) (t ≥ 0) and fC(s) (s ≥ 0)

denote the pdfs of the lengths of typical (actual) open and closed sojourns, respectively. Then it

follows from (2) and the equivalent equation for closed sojourns that

(4) fO(t) = πO exp(QOOt)QOC1 (t ≥ 0) and fC(s) = πC exp(QCCs)QCO1 (s ≥ 0).

Similarly, the joint pdf of a typical open sojourn and its subsequent closed sojourn is

fOC(t, s) = πO exp(QOOt)QOC exp(QCCs)QCO1 (t, s ≥ 0),

and the joint pdf of three successive sojourns, starting with an open sojourn, is

fOCO(t1, s1, t2) = πO exp(QOOt1)QOC exp(QCCs1)QCO exp(QOOt2)QOC1 (t1, s1, t2 ≥ 0).
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Let {X(t)} and {X ′(t)} be two aggregated continuous-time Markov chains, with transition-

rate matrices Q and Q′, respectively, each partitioned as in (1). The processes {X(t)} and {X ′(t)}

are said to be equivalent, and we write Q ∼ Q′, if when in equilibrium they yield probabilistically

indistinguishable aggregated processes, i.e. if fO = f ′
O, fC = f ′

C , fOC = f ′
OC , fCO = f ′

CO, fOCO =

f ′
OCO, fCOC = f ′

COC , . . . , where f ′
O, f ′

C , f ′
OC , f ′

CO, f ′
OCO, f ′

COC , . . . are the equilibrium sojourn time

joint pdfs for {X ′(t)}.
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Figure 2: Schemes for glycine receptor channel.

Recall that a single-channel model is often described by a kinetic scheme, indicating allowable

transitions between states. Examples of such schemes for a heteromeric α1β glycine receptor channels

are shown in Figure 2. Each scheme has 3 open states (O1, O2, O3) and 7 closed states (C4, C5, . . . , C10).

A scheme is said to be identifiable if there do not exist distinct transition-rate matrices Q and Q′ sat-

isfying its constraints such that Q ∼ Q′, otherwise the scheme is unidentifiable. Two schemes are said

to be distinguishable if there do not exist Q satisfying the constraints of one scheme and Q′ satisfying

the constraints of the other scheme such that Q ∼ Q′, otherwise the schemes are indistinguishable. An

example of two indistinguishable schemes is given in Figure 3; see Wagner et al. (1999) and Bruno et

al. (2005) for details.

O1

C2

C1

O2

O1 C1

C2

O2

Figure 3: Example of indististinguishable schemes.

3.1 Over-parameterised models

Suppose that QOO and QCC are diagonalisable, as is the case if {X(t)} is time reversible. (Equilibrium

channel gating is usually a time-reversible phenomenon; see Laüger (1995).) Then the equilibrium
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sojourn time pdfs take the form

fO(t) =

nO
∑

i=1

αi exp(−λit) (t ≥ 0),

fC(s) =

nC
∑

j=1

βj exp(−µjt) (s ≥ 0),(5)

fOC(t, s) =

nO
∑

i=1

nC
∑

j=1

αij exp(−(λit + µjs)) (t, s ≥ 0),

fOCO(t1, s1, t2) =

nO
∑

i=1

nC
∑

j=1

nO
∑

k=1

αijk exp(−(λit1 + µjs1 + λkt2)) (t1, s1, t2 ≥ 0),

where λ1, λ2, . . . , λnO
and µ1, µ2, . . . , µnC

are the eigenvalues of QOO and QCC , respectively.

Let Q denote the set of all partitioned transition-rate matrices such that QOO and QCC each

have distinct eigenvalues (and hence are diagonalisable) and the coefficients α1, α2, . . . , αnO
and

β1, β2, . . . , βnC
in the above representations of fO(t) and fC(s) are all nonzero. Fredkin et al. (1985)

showed that for Q ∈ Q, the parameters of fOCO(t1, s1, t2), fCOC(s1, t2, s2) and all higher order joint

pdfs are determined by the parameters of fOC(t, s) and fCO(s, t). Thus, by determining the maximum

number of free parameters in fOC(t, s) and fCO(s, t), they showed that Q ∈ Q is not identifiable if

it depends on more than 2nOnC independent parameters. Fredkin and Rice (1986) showed that this

bound is reduced to 2R(nO+nC−R), where R = min{rank(QOC), rank(QCO)}. Further, these bounds

are reduced to nOnC + nO + nC − 1 and (nO + nC)(R + 1) − R2 − 1, respectively, if {X(t)} is time

reversible.

These bounds can be used to show that some schemes are unidentifiable. For example, the

scheme in Figure 4 is unidentifiable (Wagner et al. (1999)) as it contains 8 transition rates but nO =

nC = 2 and R = 1, so 2R(nO + nC − R) = 6.

C2

O2

O1

C1

Figure 4: Example of an unidentifiable scheme.

3.2 Equivalent models

Recall that {X(t)} and {X ′(t)} are aggregated continuous-time Markov chains, with transition-rate

matrices Q and Q′, each partitioned as at (1). Suppose that Q, Q′ ∈ Q and Q ∼ Q′. Then the open

sojourn time pdfs imply that {X(t)} and {X ′(t)} have the same number of open states, i.e. nO = n′
O;

similarly, nC = n′
C . Kienker (1989) proved that, if Q, Q′ ∈ Q, then Q ∼ Q′ if and only if there exists

a nonsingular (similarity) matrix

S =

[

SOO 0

0 SCC

]

,
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where S is partitioned as in (1), such that S1 = 1 and

Q′ = S−1QS.

A necessary and sufficient condition for Q ∼ Q′ for general Q was proved by Larget (1998) but this is

much less transparent than Kienker’s condition.

Model 1 Model 2

a

b

c

d
O1 C2 C3 C2 O1 C3

µ1 a(1 − β)

aβ µ2

Figure 5: Equivalent three-state models.

A simple example of two equivalent models, examined in more detail in Kienker (1989), is given

in Figure 5. In Model 1, the underlying continuous-time Markov chain {X(t)} is time-reversible (since

its associated graph is a tree; see Kelly (1979), Lemma 1.5), so β1, β2 in (5) are nonnegative (Kijima

and Kijima (1987)). Hence, the closed sojourn time distribution is a mixture of two exponential

distributions and its pdf takes the form fC(s) = βµ1e
−µ1s + (1 − β)µ2e

−µ2s (s ≥ 0), where β ∈ (0, 1).

It is then immediate that Models 1 and 2 are equivalent since, in both models, successive open and

closed sojourn times are mutually independent (as there is only one open state) and open sojourn

times follow an exponential distribution with mean a−1.

3.3 Identifiability and distinguishability of schemes

It is straightforward to use Kienker’s condition to determine whether two given models (i.e. Qs) are

equivalent but generally it is a much harder task to determine whether a given scheme is identifiable

or whether two given models are distinguishable. In practical applications transition-rate matrices

usually belong to Q (possibly after state-space reduction to remove symmetries), so we now restrict

attention to such Q.

Bruno et al. (2005) introduced Manifest Interconductance Rank (MIR) form, a canonical form

for aggregated Markov models which greatly aids determining identifiability and distinguishability of

schemes. We now assume that, for i, j ∈ E, qij > 0 if and only if qji > 0, a condition that is satisfied

by any plausible steady-state single-channel model (and by all time-reversible models). An open state,

i say, is termed an open gateway state if qij > 0 for some closed state j (so the channel can leave and

enter the open class O via state i) and a closed gateway state is defined similarly. A scheme is in MIR

form if and only if (i) all gateway states have precisely one link to the other class and (ii) there is no

link between non-gateway states. Bruno et al. (2005) proved that amost every model can be expressed

in MIR form, i.e. for almost all Q ∈ Q, there exists a Q′ in MIR form such that Q ∼ Q′. However,

some of the transition rates in Q′ may be negative (or even complex if {X(t)} is not time reversible).

They also proved that MIR form is identifiable for almost all parameters, i.e. for almost all Q and Q′

in MIR form, if Q∼Q′ then Q = Q′ (possibly after permutation of states). The exceptional cases in

the above results consist of degeneracies, such as certain matrices not being diagonalisable.

Bruno et al. (2005) described how to transform a model to MIR form, when it is possible. Thus

to determine whether or not two schemes are distinguishable it is sufficient to transform a general

model from each scheme into MIR form. This may not be easy in practice and there is also the issue

of exceptional cases. However, many schemes in the ion channel literature are close to being in MIR

form and investigating distinguishability of some such schemes motivated Ball et al. (2011) to define

the following simple extension of MIR form.
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A scheme is in open semi-MIR form if (i) every open state is a gateway state and (ii) every

gateway state has precisely one link to the other class. Thus all the schemes in Figure 2 are in open

semi-MIR form (indeed schemes (1) and (5) are in MIR form).

Suppose that Q is in open semi-MIR form. Let A denote the set of closed gateway states and

let B = C \ A. Then Q can be expressed in the partitioned form

Q =







QOO QOA 0

QAO QAA QAB

0 QBA QBB






.

Let {X̃(t)} be the aggregated continuous-time Markov chain, having state space C = A ∪ B, that is

derived from {X(t)} by setting all closed-to-open transition rates to zero. Then {X̃(t)} has transition-

rate matrix Q̃, given in partitioned form by

Q̃ =

[

QAA + QAO QAB

QBA QBB

]

.

Ball et al. (2011) showed that, under mild conditions, if {X(t)} and {X ′(t)} are equivalent, then

so are the corresponding derived processes {X̃(t)} and {X̃ ′(t)}, when viewed as aggregated continuous-

time Markov chains on the state space C partitioned into A ∪ B, thus reducing the dimension of the

problem. Further, for schemes with a block structure, such as the schemes in Figure 2, such dimension

reduction can be done progressively. Ball et al. (2011) used such arguments to show that schemes in

Figure 2 (and some other schemes for glycine channels) are distinguishable and identifiable, except for

very few explicitly-stated exceptional cases.

3.4 Time interval omission induced near-unidentifiability

Although it is intuitively plausible, and fairly easy to show formally, that if Q ∼ Q′ then the cor-

resonding observable processes incorporating time interval omission and/or bursts are probabilistically

indistinguishable, it is not known whether or not the converse is true. However, it is well known that

time interval omission can cause near-unidentifiability. This occurs even in the simple two-state model

shown in Figure 6; see, for example, as Yeo et al. (1988) and Ball and Davies (1995).

O1 C2
µ−1

C

µ−1
O

Figure 6: Two-state model.

The left panel of Figure 7 shows, for the two-state model of Figure 6, the log-likelihood function

of the mean (actual) open and closed sojourn times (µO, µC) based on 10, 000 simulated pairs of

observed open and closed sojourns, with µO = 0.2990, µC = 0.8787 and τ = 0.2 ms. The likelihood

function has two local maxima of similar heights, a slow peak (µ̂S
O, µ̂S

C) = (0.2975, 0.8896), which

in this case corresponds to the actual model, and a fast peak (µ̂F
O, µ̂F

C) = (0.1070, 0.2194), which

here is an artifact of time interval omission. The right panel of Figure 7 shows a slice of the log-

likelihood surface in the vertical plane through the two maxima. A similar phenomenon has been

observed in more complicated models; see, for example, Colquhoun et al. (2003). Distinguishing

between the corresponding two candidate models can sometimes be done by examining the underlying

single-channel record, otherwise they can be discriminated between by observing the same channel

under different experimental conditions (for example, different agonist concentrations). Clearly such
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multimodal likelihood surfaces make designing MCMC samplers that move freely in their associated

parameter spaces challenging. Similar identifiablity issues may also arise when making inference

directly from single-channel recordings.
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Figure 7: Log-likelihood of (µO, µC) for two-state model.

3.5 Poorly resolved models

Although, in theory, two or more schemes may be distinguishable, in practice, their predictions may

be sufficiently similar to make discriminating between them difficult. Similarly, a scheme may be

identifiable in theory but hard to resolve in practice. A striking example of the latter was given by

Fredkin and Rice (1992), who considered amongst others the two three-state models shown in Figure 8.

Model 3 Model 4

O1 C2 C3

94 91

50 4
O1 C2 C3

94 4

50 91

Figure 8: Three-state models.

As shown in Fredkin and Rice (1992), Model 3 is easily resolved but Model 4, which has been

proposed for a sodium channel, is not. This is illustrated in Figure 9, which shows scatter plots of

maximum likelihood estimates of the parameters (q21, q23, q32) governing closed sojourns from 1, 000

simulations of each model. For Model 3, each simulation comprised of 1, 000 actual closed sojourns,

whilst for Model 4, each simulation comprised of 10, 000 actual closed sojourns. (For these models, if

actual sojourns are observed, open sojourns provide no information about (q21, q23, q32).) Note that

although the estimates for Model 3 are satisfactory, those for Model 4 clearly are not, in spite of being

based on appreciably more data. Thus even a very simple model with ideal data may be difficult to

resolve.

Related difficulties may also arise when trying to discriminate between alternative schemes, a

topic of considerable practical importance when using models to understand ion channel function.

Competing schemes are often not nested, which causes problems when using classical likelihood ratio

tests. See Hodgson et al. (1999) and Wagner and Timmer (2001), respectively, for Bayesian MCMC
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Figure 9: Scatter plots of maximum likelihood estimates of (q21, q23, q32) for Model 3 and Model 4.

and likelihood-based approaches to model choice in Markov models of single ion channels, which is an

area that is in urgent need of further research.
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