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Introduction

The target of a computer experiment is to find a surrogate for a complex model or a simulator.

This surrogate is numerically simpler and reduces the numerical complexity and run time. The surro-

gate is usually called an emulator or a meta model. A computer experiment, then, comprises n runs

of this complex model (simulator) with various inputs xD, where, x is the vector of the input variables

of dimension d and D is a design of n inputs leading to a more efficient analysis of the model. The

output, Y (x), of the simulator can be univariate or multivariate. In this paper the concern is with

the univariate and deterministic output. The output at any set of the inputs always yields the same

output. There is no random error assumed for these deterministic models.

The aim is to explore different techniques to sequentially select the model based optimal design

D for the computer experiment. The mathematical models used in modelling the output Y (x) are

described in Section 1 with emphasis on the Gaussian Process (GP) model. Section 2 illustrates the

orthogonal expansion in approximating the covariance function of the GP model via the Karhunen-

Loeve (K-L) expansion. Section 3 discusses the use of the Haar wavelets in the numerical solution for

the K-L expansion. The hierarchical Bayesian analysis of the approximated GP model is explained in

Section 3. The design problem using the Maximum Entropy Sampling (MES) criterion is demonstrated

in Section 4. In addition, Section 4 introduces the new Approximate Adaptive Maximum Entropy

Sampling criterion which is derived from the Bayesian analysis of the approximated model. The

algorithm used to select the adaptive design using the new criterion is explained in details in Section

5. Examples on the sequential designs using the innovated criterion are given in Section 6. Conclusions

are given in Section 6.

Modelling the deterministic output of a computer experiment

The main task for implementing the computer experiment is to construct an accurate and

efficient model for the output Y (x) for prediction purposes. Chen et al. (2003) and Fang et al. (2006)

discuss different methods for modelling the output Y (x). In most cases the assumed models are a

linear combination of some basis functions.

Kriging is widely used in computer experiments (Cressie, 1988), (Sacks et al., 1989) and (Koehler

and Owen, 1996). It models the deterministic computer output Y (x) as a realization of a stochastic

process, usually assumed to be a Gaussian Process. A Gaussian Process is defined to be a collection

of a finite number of random variables with a joint Gaussian distribution.

The GP model for the output Y (x) at the design point x where x ∈ D and x = {x1, . . . xd} of
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dimension d has the following form

Y (x)1×1 = hT (x)1×pβp×1 + Z(x)1×1(1)

with

h(x) = [h1(x), · · · , hp(x)]T

βT = [β1, · · · , βp]T

where h(x)’s are known fixed functions, β’s are unknown coefficients and Z(x) is a stochastic process.

The stochastic process Z(x) is usually assumed initially to be a stationary Gaussian process with a

zero mean and a positive definite covariance function between Z(x) and Z(x′),

Cov(Z(x), Z(x′)) = σ2R(x,x′)(2)

where σ2 is the process variance and R(x,x′) is the correlation function in x and x′. In the matrix

form, the model is represented as

Yn×1 = Xn×pβp×1 + Zn×n

where Y is the vector of n observations, X is the design matrix, β is the vector of p mean parameters

and Z is a vector of size n stochastic processes.

The classical approach using the Best Linear Unbiased Prediction (BLUP) is not followed in

this paper, instead the Bayesian estimation and prediction approach is adopted. This allows for

the incorporation of the updated information in the model analysis at every stage of the sequential

experiment.

Orthogonal expansion of a Gaussian Process

If {Z(x)} is a second order stochastic process with a zero mean and a continuous correlation

function, σ2R(s, t), then Mercer’s theorem can be exploited to represent the correlation function R(s, t)

as

R(s, t) =
∞
∑

i=0

λiφi(s)φi(t)(3)

where {λi, i ∈ N} and {φi, i ∈ N} are the non-zero eigenvalues and the eigenfunctions of R(s, t)

obtained by solving the integral equation known as ”Fredholm integral equation”

∫ b

a
R(s, t)φi(t)dt = λiφi(s).(4)

Series (3) converges uniformly in both variables s and t.

Correspondingly, the stochastic process Z(x) is represented using the Karhunen-Loeve expansion

(K-L) by

Z(x) =
∞
∑

i=1

√

λiζiφi(x)(5)

and

ζi =
1

λi

∫ b

a
Z(x)φi(x)dx.(6)

The basis functions {φi(x)} and {ζi} are orthonormal in the sense that E(ζi) = 0 and Cov(ζi, ζj) = δij .

In practice, the expansion in (5) is truncated at q. The choice of q is done using an arbitrary

threshold, q can be chosen to be the number of eigenvalues > 0.009. The high eigenvalues correspond
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to eigenfunctions mostly control the correlation function. However, for a non-smooth correlation

function neglecting the small eigenvalues is not desirable for accuracy reasons.

Finally, the output Y (x) is approximated as

Y (x) = hT (x)β +
q
∑

i=1

√

λiζiφi(x) + ǫ(x)(7)

where

ǫ(x) =
∑

i≥q+1

√

λiζiφi(x).(8)

The term ǫ(x) resembles the addition of a nugget effect to the deterministic model.

The final representation of the deterministic output Y (x) is of the form

Y (x) = hT (x)β + φ(x)Tγ + ǫ(x)(9)

where β is the vector of mean parameters of size p, φ(x) is a 1 × q matrix of eigenfunctions and γ is

a q × 1 vector of mean parameters where γi =
√
λiζi.

Numerical solution of the orthogonal expansion

Finding the eigenvalues and the eigenfunctions of the covariance kernel requires solving the

Fredholm integral equation (4). The analytical solution only exists for some particular classes of the

correlation functions. Therefore the numerical solution is needed when the analytical solution is not

available. The expansion method known as Galerkin method is one of the numerical methods. It is

used to approximate the eigenfunction by a linear combination of chosen basis functions as described

in (Huang and Phoon, 2001). The accuracy of this method depends on the number of basis functions

used.

The Haar wavelet basis functions can be considered as a suitable choice to approximate the

eigenfunction φi(x). Phoon et al. (2002), Ramsay and Silverman (2005), Lepik and Tamme (2007),

Wang (2008) and Youssef (2011) recommend the use of the Haar basis functions in the numerical

solution for the linear integral equations.

The eigenfunction φi(t) is expressed as a linear combination of Haar orthonormal basis functions

φi(t) =
M
∑

k=1

dikψk(t) = ψ(t)TDi = DT
i ψ(t)

where Di is a vector of unknown coefficients {dik}, i = 1, . . . , q obtained numerically via a discrete

wavelet transformation.

The number of the basis functions M is agreed to be M = 2n orthogonal basis functions. They

are constructed on [0, 1] in the following way

ψ1 = 1; ψi = ψj,k(x); i = 2j + k + 1; j = 0, 1, · · · , n− 1; k = 0, 1, · · · , 2j − 1,

where the simplest Haar wavelet basis function is defined as

ψ(x) =











1 0 < x < 1
2

−1 1
2 ≤ x < 1

0 otherwise

.(10)

and the other Haar wavelets functions are

ψj,k(x) =











1 k2−j ≤ x < 2−j−1 + k2−j

−1 2−j−1 + k2−j ≤ x < 2−j + k2−j

0 otherwise

.(11)
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Function (11) forms the family of the orthogonal Haar wavelets by shifting ψ(x) of the function in

(10). These functions are orthogonal because
∫ 1

0
ψj,k(x)ψm,n(x)dx = 2−jδj,m.

For a detailed explanation of computing the K-L expansion for dimension d > 1 using Haar wavelets

see (Youssef, 2011).

Hierarchical Bayesian analysis

The hierarchical Bayesian analysis assigns hyper-priors to the model parameters in (9). As

assumed, the output Y |β,Λ, σ2 has a multivariate normal distribution

Y |β,Λ, σ2 ∼ N(Xβ, δσ2I)(12)

where Λ is the prior covariance for β and δ represents the nugget effect resulting from using the K-L

expansion. We assign the following natural conjugate prior distributions as

β|Λ, σ2 ∼ N(µ, σ2Λ)

Λp+q×p+q|σ2 ∼ IW (Ψ,m)

σ2 ∼ IG

(

a

2
,
b

2

)

The hyper-parameter Ψ is a matrix of the same size as Λ. The hyper-parameter m corresponds to

the degrees of the Inverse-Wishart (IW ) distribution. The degrees of freedom m has to be greater

than the size of the matrix Λ. The mean parameters β and γ are a priori independent. The output Y

depends on Λ via the dependence of β on Λ.

The main interest now is to find the marginal predictive distribution f(Yr|Yn) where Yn is the

vector of n already observed outputs and Yr is the vector of r unobserved outputs that correspond

to a future design of r points. Finding the marginal posterior distributions for the parameters or

the predictive distribution is computationally hard using the ordinary methods. Integrating over β

to obtain the marginal conditional distribution of Λ|Y is not straightforward, it requires numerical

methods. Empirical Bayes estimation is a commonly used alternative in the hierarchical structure

(Carlin and Louis, 1996). This helps in introducing a new criterion in the next section that adapts to

the observations better, i.e. selecting the next stage design requires observing the output.

The design problem

One of the design optimality criteria used in computer experiments is the Maximum Entropy

Sampling design (MES) presented in (Shewry and Wynn, 1987). In general, entropy is defined as the

negative measure of information,

Ent(Y (x)) = EY (x)[− log p(Y (x))]

where Y (x) is a random vector, p(·) is a density function of Y (x) at the design points x = {xi},
i = 1, . . . , n.

Maximizing the information about the parameters is equivalent to minimizing the information

for prediction at the unsampled points. In this paper, the aim is to find a sequential optimal design

to maximise the information about the parameters of the truncated model in (9). The Bayesian

framework is suitable for the sequential strategy of choosing the design. However, it has been shown

in (Youssef, 2011) that sequential strategy does not necessarily imply adaptivity except for some

criteria for the Gaussian models.
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Approximate Adaptive Maximum Entropy Sampling criterion

The target is to find the entropy of the predictive distribution which is Ent(Yr|Yn). This involves
integrating over Λ, β and σ2. The general entropy of the future observations Yr in the Gaussian case,

ignoring constants, is

Ent(Yr) ≈ log detV ar(Yr) ≈ log det(Xrσ
2ΛXT

r + σ2δI).(13)

To reach the new criterion we initialise by computing the conditional posterior distribution of Λ|β, Yn, σ2
as

π(Λ|β, σ2, Yn) ≈ π(Λ, β, σ2|Yn)
π(β, σ2|Yn)

≈ (
1

σ2
)
p+q+m+1

2
−1 det(Λ)−

p+q+m+1
2 exp

(

− 1

2σ2
(trace(Ψ∗)Λ−1)

)

(14)

where Ψ∗ is given by Ψ + (β − µ)(β − µ)T .

The above term Ψ∗ can be considered as an update for the Inverse Wishart (IW ) distribution

parameter Ψ. The conditional expectation, E(Λ|β, σ2, Yn), is given by

E(Λ|β, σ2, Yn) =
Ψ + (β − µ)(β − µ)T

m− p− q − 1
=

Ψ∗

m− p− q − 1
(15)

wherem is the degrees of freedom of the IW distribution and p+q is the number of mean parameters in

the model. This conditional expectation is calculated to replace Λ in the right hand side of equation

(13). However, this is not the proper posterior mean of Λ because we have not marginalised with

respect to β and σ. Therefore, instead of carrying out the integration we replace β in equation (15)

by some estimates. This is considered as an empirical Bayes step. We suggest two options for finding

these estimates. The first option is to replace β by its OLS estimator

β̂OLS = (XT
nXn)

−1XT
n Yn(16)

where Xn is the design matrix corresponds to the already selected design, and Yn is the observed

output at the chosen design points. The second option is to find the posterior mode Bayes estimator

by maximising the joint posterior distribution with respect to β. In this case β̂ is given by

β̂Bayes =
(

XT
n δ

−1Xn + Λ−1
)−1 (

XT
n δ

−1Yn + Λ−1µ
)

.(17)

The formula in equation (17) requires an estimate for Λ. This is replaced by its conditional expectation

in equation (15). The updating formula becomes

β̂Bayes =

(

XT δ−1X + (
Ψ∗

m− p− q − 1
)−1
)−1 (

XT δ−1Yn + (
Ψ∗

m− p− q − 1
)−1µ

)

(18)

Now, the criterion in equation (13) is equivalent to

det
(

σ2XrE(Λ|β, Yn)XT
r + σ2δI

)

,

and this becomes

det

(

Xr

[

(Ψ + (β̂ − µ)(β̂ − µ)T )

m− p− q − 1

]

XT
r + δI

)

.(19)

By expanding the formula in (19) we have three terms inside the determinant

det

(

Xr

Ψ

m− p− q − 1
XT

r +Xr

(β̂ − µ)(β̂ − µ)T

m− p− q − 1
XT

r + δI

)

.(20)
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It can be noticed from equation (20) that this criterion is iterative. This implies that updating Ψ

depends on updating the estimate of β. The next stage design is influenced by the previous one

through the updated values of Ψ and β̂. If the design is selected one point at a time then the effect of

δ is negligible. Moreover, the first term in equation (20) is similar to the information matrix while the

second term involves choosing the point where the difference between the two successive estimates of

the mean function XTβ is the maximum. The next section provides a detailed algorithm of selecting

the design based on the criterion in equation (19).

Adaptive Maximum Entropy Sampling algorithm

This algorithm describes the steps to find the design D sequentially one point at a time using

the new criterion in (19)

Initialisation Assume a candidate set E of all eligible points, a sample size s, estimates for the

covariance parameters associated with the chosen covariance function, Yr = ∅ and D = ∅ and

set the counter k = 0.

Step 1 Find the eigenvalues λ1, λ2, . . . λq and eigenfunctions of the corresponding covariance using

the K-L expansion via the Haar wavelet basis and assume δ to be a small scalar, for example

0.0003

Step 2 Assuming a constant mean β in addition to the mean parameters obtained using the eigen-

values of the K-L expansion then the vector of the hyper-parameters of the mean parameters µ

is

µ(0) = (µ0, µ1, . . . , µq)

where µ
(0)
0 = 0, µi =

√
λiεi, i = 1, . . . , q and ε ∼ N(0, σ2).

Step 3 Set the parameters of the IW such that ψ(0) = Iq+p×q+p or it can be Λ the diagonal matrix

with {0.001, λ1, . . . , λq} and m the degrees of freedom to be less than p+ q. Also, set β(0) = µ(0)

and assume σ2 = 1. These values are chosen arbitrarily depending on the aim of the study.

Step 4 Since the sample size at each stage is one point at a time, then the selected point is the one

at which the criterion value is the maximum. The criterion C at the kth iteration is

C(k+1) = x(k)
T

Ψ(k)x(k) + x(k)
T

(β̂(k) − µ(k))(β̂(k) − µ(k))Tx(k) + δ.

If k > 0 then µ(k) = β̂(k−1).

Step 5 Once the design point Dk is chosen we observe the output at this design point. Set k = k+1,

Yr = Yr
⋃

Y (k), E = E \ Dk and D = D⋃Dk. Compute β̂(k) using either equation (16) or

equation (17) and Ψ̂(k) and hence E(Λ|β, σ2, Y )(k) = Ψ̂(k)

m−q−p−1 .

Step 6 Repeat Steps 4 and 5 till we get the design D of size s.

Example on Approximate Adaptive Maximum Entropy Sampling design

This example aims at studying whether the design selected is adaptive to the observed data.

This can be illustrated by choosing a simulator function and comparing the design points locations
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with the shape of the simulator function. We choose, as a simple example, the simulator function used

by (Saltelli, 2000) in two dimensions

Y (x) =
(x2 +

1
2)

4

(x1 +
1
2)

2

with the power exponential covariance function

Cov(Z(x), Z(x′)) = σ2 exp(−θ|xki − xkj|qk)(21)

where (̂y(x)) = XT β̂. The simulator shape is shown in Figure 1(a). Estimates of the covariance

parameters are available from a previous study, see Table . The truncated K-L expansion at q = 6 is

obtained using M = 256 Haar wavelets basis functions. For simplicity reasons, the process variance

σ2 is assumed to be known and equals to one. The nugget is assumed to be a small scalar, δ = 0.0003.

The design selection is implemented sequentially one point at a time. To observe the adaptivity and

the improvement in the prediction accuracy we calculate the Empirical Root Mean Squared Error

(ERMSE). Hence, a validation sample of size nv is required to calculate the ERMSE. The validation

sample is chosen to be a Halton sequence of size 30. The ERMSE is then calculated as

ERMSE =

√

√

√

√

1

nv

nv
∑

i=1

(ŷ(xi)− y(xi))2.

The design is obtained as described in (Youssef, 2011). The algorithm depends on finding a value for β̂

and then substituting in the updating formulae to estimate Ψ∗ at every stage and then find the design

point. In practice, two designs are obtained using both estimators of β̂ in (16) and in (17). Using

both estimators for β̂ has proved that the designs are adaptive to the observations. The sequential

design obtained by using the estimator in (16) is shown in Figure 1(b) while the one obtained using

the estimator in (17) is shown in Figure 1(c). The ERMSE for both designs is proved to decrease by

observing more data. By comparing the design points locations in Figure 1(b) to the shape of the

simulator in Figure 1(a) we can observe that the design points are more located in the regions where

the simulator function has some peaks. The design has fewer points where the curve is flat and has

no peaks or no fluctuations. The same behaviour is noticed for the design obtained using the Bayes

estimator in (17), see Figure 1(c). Both designs have a decreasing ERMSE values, see Figure 1(d)

and Figure 1(e). The ERMSE curve in both figures starts with high values then decreases when the

sample size increases with some irregular changes in the middle. This implies that the chosen design

is adaptive to the data.

θ̂1 θ̂2 q̂1 q̂2

2.093 1.547 1.981 1.981

Table 1: Estimates of the exponential covariance parameters
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(b) A 30 point design using the approx-

imate adaptive MES using the OLS es-

timator for β.
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(c) A 30 point design using the approxi-

mate adaptive MES using the Bayes es-

timator for β.
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(d) Plot of the Empirical Root Mean Squared

Error against the stage number using the OLS

estimator for β.
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(e) Plot of the Empirical Root Mean Squared

Error against the stage number using the

Bayes estimator for β.

Figure 1: Figures for Example 1
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Conclusions

New methods to reduce the complexity of the analysis of a Gaussian process are investigated in

this study. This includes the use of the K-L expansion to approximate the covariance function of the

process. Haar wavelet basis functions are the preferred methods to approximate the eigenfunctions

when the analytical solution is not available. The proceeding analysis is directed to find a fully

adaptive procedure which uses the past output values as well as the input values. This is achieved

by having a hyper-parameter (hierarchical) structure on the model. An Inverse Wishart is assumed

as a prior distribution on the covariance matrix. To avoid integration an empirical Bayes solution

is adopted. This empirical Bayes step leads to find an adaptive criterion called an Approximate

Adaptive Maximum Entropy Sampling criterion. Examples are given to demonstrate the adaptivity

of the criterion.
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