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Introduction

In recent years, because of its advantage of creating new information from already existing files
by linking them, the linkage process becomes an important research tool in many areas such as health,
business, economics and sociology. One important linkage application is where different data sets
relating to the same individuals at different points in time are linked to provide a longitudinal data
record for each individual, thus permitting longitudinal analysis for these individuals. As an example,
Brook et al. (2008) claims that the Western Australia Data Linkage Unit has been able to produce
708 research outputs, comprising journal articles, reports, presentations, conference proceedings and
thesis, during the period of 1995-2003 though the comprehensive system of linked health records in
Australia.

In Australia, the Census Data Enhancement project of the Australian Bureau of Statistics aims
to develop a Statistical Longitudinal Census Dataset by linking data from the same individuals over
a number of censuses. It is expected that this linked data set will provide a powerful tool for future
research into the longitudinal dynamics of the Australian population. As a preparation of this project,
a quality test for the the linkage process between a sample data and a census data has been done and
the results are reported in Bishop and Khoo (2007). They found that their linkage procedure provides
87% correct linkage rate when names and address are used. These figures are quite common in many
studies done in Australia. For example, Holman et al. (1998) showed that a linkage procedure done in
1996-1997 in Western Australia provides 87%, while the hospital morbidity data in Victoria in 1993-
1994 showed 78-86% of accuracy. These rates will be lower when the actual names and addresses are
not provided for linkage procedure, which is the most possible scenario for the Statistical Longitudinal
Census Dataset of the Australian Bureau of Statistics due to the strict confidentiality regulations. This
in turn could lead to bias and loss of efficiency for the longitudinal modelling process. Further, as the
number of censuses to be linked increases, the structure of linkage error will be more complicated and
it will increase more bias and inefficiency for the modelling process.

The work of Neter et al. (1965) shows that a small amount of mismatching could cause significant
response error. Their work has become a foundation of the analysis on the linkage error. Some authors,
such as Scheuren and Winkler (1993, 1997) and Lahiri and Larsen (2005), have tried to extend the
work of Neter et al. (1965) on regression setting. However, their works only work for the situation
where two data sets are to be merged. But, the linkage error structure of linked data sets, when the
number of data sets to be merged are more than two, are more complicated compared to the linkage
error structure of two data sets. As far as our knowledge, this is the first attempt to correct the
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linkage errors in the merged data sets when the number of data sets are more than two. We will
use three data set case as an illustration of our regression analysis, but it is trivial to see that it can
be easily extended to deal with any number of data sets. Furthermore, we also considered the case
where one data set is a sample and others are registers, and some of sample cannot be linked to other
registers.

Methodological development

The aim of this section is to develop an empirical Best Linear Unbiased Estimator of a regression
model from the merged data sets when there exist some linkage errors among them. Especially, we
are interested the case where a sample data set has be merged with other registers to form a new data
set. To do that, we started with the case where all the data sets are registers. The main reason is
that most of theoretical developments can be done under this situation and the sample to registers
case can be extended from it easily. Further, to explain some of main ideas, we start with a ratio-type
estimator.

1 A ratio-type estimator: when all data sets are registers

Note that our model is of the form

Y = β0 +X1β1 +X2β2 + ε.

Suppose that X1 is the bench mark data set. When some of x1i are incorrectly linked with corre-
sponding yi or with x2i, our regression model becomes of the form

Y ∗
q = β0 +X1qβ1 +X∗

2qβ
∗
2 + εq = X∗

qβ
∗ + εq,

where X∗
q = (1q,X1q,X

∗
2q). Note that Y ∗

q and X∗
2q are the values that are linked, with some linkage

errors, to the values of X1q and, theoretically, one has

Y ∗
q = AqY q and X∗

2q = B2qX2q

where Aq and B2q are permutation matrices. In reality, X2q is not observable, and we only observe
X∗

2q. However, if the matrix B2q is known, one has

X2q = BT
2qX

∗
2q.

Thus,

Xq = (1q,X1q,X2q) = (1q,X1q, B
T
2qX

∗
2q).

Let

(1) XB2
q = (1q,X1q, B

T
2qX

∗
2q).

Because B2q is unknown in general, we adapt the non-informative linkage assumption, that is,

EX∗(X2q) = EX∗(BT
2q)X

∗
2q = EB2qX

∗
2q,

where EB2q satisfies the exchangeable linkage error model. It means

EB2q = (λB2q − γB2q)Iq + γB2q1q1
T
q ,
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where

λB2q = pr(correct linkage between X1q and X∗
2q)

and

γB2q = pr(incorrect linkage between X1q and X∗
2q).

Let

(2) XE
q = EX∗(Xq) = EX∗

[
(1q,X1q,X2q)

]
= (1q,X1q, EB2qX

∗
2q).

Then, by non-informative linkage assumption on Aq, one has

(3) EX∗(Y ∗
q) = EX∗(AqY q) = EX∗(Aq)EX∗(Y q) = EAqEX∗(Y q) = EAqX

E
q β,

where

EAq = (λAq − γAq)Iq + γAq1q1
T
q

with

λAq = pr(correct linkage between X1q and Y ∗
q)

and

γAq = pr(incorrect linkage between X1q and Y ∗
q).

Further, we assume that the mismatch between x1i and yi is uncorrelated with the mismatch between
x1i and x2i. With these assumption, by OLS, one has

β̂
∗

=
[∑

q

(X∗
q)
TX∗

q

]−1[∑
q

(X∗
q)
TY ∗

q

]
=
[∑

q

(X∗
q)
TX∗

q

]−1[∑
q

(X∗
q)
TAqY q

]
and

EX∗(β̂
∗
) =

[∑
q

(X∗
q)
TX∗

q

]−1[∑
q

(X∗
q)
TEAqX

E
q

]
β = D3β.

Thus, if the matrices EX∗(B2q) = EB2q and EX∗(Aq) = EAq are known and the inverse of D3 exists,
a ratio form of an unbiased estimator of β for this case is of the form

β̂R = D−1
3 β̂

∗
.

Let f q = Xqβ, f
∗
q = X∗

qβ and fEq = XE
q β.

Proposition 1. An asymptotic variance estimator of β̂R can be defined by

V̂ (β̂R) =
[∑

q

(X∗
q)
TXE

q

]−1[∑
q

(X∗
q)
T V̂ (Y ∗

q)X
∗
q

]([∑
q

(X∗
q)
TXE

q

]−1)T
,

where

V̂ (Y ∗
q) = σ̂2Iq + V̂ Aq + V̂ C2q .
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Here, V̂ (Y ∗
q) can be estimated by using

σ̂2 = N−1
(∑

q

(Y ∗
q − fEq )T (Y ∗

q − fEq )− 2
∑
q

(fEq )T
[
Iq − EAq

]
fEq

)
and,

V Aq = diag
[
(1− λAq)

{
λAq(fEq,i − f̄Eq )2 + f̄E(2)

q − (f̄Eq )2
}]
,

where fEq = (fEq,i) and f̄Eq , f̄
E(2)
q are the averages of fEq,i and their squares respectively in fEq . Further,

given f∗B2q
:= X∗

2qβ2, one has

V C2q = (1− λB2q
) diag

[(
Mq − 1

)−1[(λAqMq − 1)di +Mq(1− λAq)d̄q
]
; i ∈ q

]
,

where di = λB2q
(f∗B2q ,i

− f̄∗B2q
)2 + f̄

∗(2)
B2q
− (f̄∗B2q

)2 and d̄q is the mean of {di; i ∈ q}.

2 The estimating function: when all data sets are registers

Godambe (1960) developed the estimating function method where MLE is a special case of this method.
Since then there have been many researches in this direction. In this subsection, we briefly review
the estimating function approach. Our main purpose is to develop an optimal estimating function
approach called the empirical Best Linear Unbiased Estimator.

A naive estimating function can be of the form

H∗(θ) =
∑
q

Gq(θ)
{
Y ∗
q − f∗q(θ)

}
,

where f∗q(θ) = X∗
qβ. In this case, a naive estimator can be found by solving H∗(θ) = 0 where

Gq =
(
∂θfq

)T = XT . Then, as before, it is easy to see that the estimator from the naive estimation
function is biased, because

EX∗(Y ∗
q) = EAqf

E
q (θ) 6= f∗q(θ).

Hence, by (2) and (3), an unbiased estimator is of the form

(4) H∗
3(θ) =

∑
q

Gq(θ)
{
Y ∗
q − EAqf

E
q (θ)

}
,

and an unbiased estimator θ̂
∗

can be defined as the the solution of

H∗
3(θ̂

∗
) = 0.

Theorem 2. The asymptotic variance estimator for the solution of (4) is of the form

V̂ (θ̂
∗
) =

[∑
q

ĜqEAq∂θf
E
q (θ̂

∗
)
]−1[∑

q

ĜqΣ̂∗3
q Ĝ

T
q

]([∑
q

ĜqEAq∂θf
E
q (θ̂

∗
)
]−1)T

,

where,

Σ̂∗3
q = σ̂2

qIq + V̂ C2q + V̂ Aq

can be estimated by the same methods in the propositions 1.
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3 Sample-registers case: When sample records are not perfectly

linked

In this section, we consider the case where we only observe a sample s of records from the bench mark
data set. Suppose that X1 is the bench mark data set. In this section we consider the case where
some records in the sample s cannot be linked to a record in X2-register or Y -register.

If we assume that the distribution of Y ∗
slq is the same as that of Y in the population, the

observable population value 1Tq f
E
q (θ) can be replaced by weighted sample estimate by wT

slqf
E
slq(θ)

1 so
that one has

Hadj
wsl(θ) =

∑
q

Gslq

{
Y ∗
slq − ẼAslq

fEslq(θ)
}
,

where

ẼAslq
=
[λAqMq − 1

Mq − 1

]
Islq +

[1− λAq

Mq − 1

]
1slqwT

slq.

For fEslq(θ), note that by (2)

fEslq(θ) = (1slq,X1slq, EBsl,2q
X∗

2q)(β0, β1, β2)T ,

where

EBsl,2q
X∗

2q = Eslsl,B2qX
∗
2slq + Eslsu,B2qX

∗
2suq + Eslrl,B2qX

∗
2rlq + Eslru,B2qX

∗
2ruq.

If we also assume that the distribution of X∗
2slq is the same as that of X∗

2q in the population,
then EBsl,2q

X∗
2q can be replaced by ẼBsl,2q

X∗
2slq where

ẼBsl,2q
=
[λB2qMq − 1

Mq − 1

]
Islq +

[1− λB2q

Mq − 1

]
1slqwT

slq.

Then, fEslq(θ) can be evaluated by

fEslq(θ) = (1slq,X1slq, ẼBsl,2q
X∗

2slq)(β0, β1, β2)T .

Suppose that we know λAq and λB2q , and let θ̂
s∗

be the solution of the estimating equation.
Then it is clear that the asymptotic variance is of the form

VarX∗(θ̂
s∗

) ≈
[
∂θH

adj
wsl(θ0)

]−1VarX∗
[
Hadj

wsl(θ0)
]([

∂θH
adj
wsl(θ0)

]−1
)T
.

Theorem 3. Under the assumption that Gslq is independent of θ, an estimator of the asymptotic
variance of θ̂ is of the form

V̂ sl(θ̂
s∗

) =
[∑

q

ĜslqẼAslq
∂θf

E
slq(θ̂)

]−1[∑
q

ĜslqΣ̂slqĜ
T
slq

]([∑
q

ĜslqẼAslq
∂θf

E
slq(θ̂)

]−1)T
,

where

Σ̂slq = σ̂2Islq + V̂ Aslq
+ V̂ C2slq

.

1We will use wslq = (
Mq

mslq
)1slq, where mslq is the number of linked sample records, while Mq is the total population

number in qthm-block.
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4 Simulation

We use simulation to compare the performances of different estimators we considered in this study.
The model we used in this simulation is of the form

Y t = β0 + β1Xt + α2Y t−1 + εt.

One scenario of this type model is that Y t represents a health system costs of individuals for a given
year that can be collected from an administrative data while Xt represents some health risk factor
of individuals collected from hospital patients data. Because Y t and Y t−1 are measured in different
time, there are no autocorrelations between them so that the linear regression can be applied in this
model.

In this simulation, we set θ = (β0, β1, α2) = (1, 3, 0.7). Xt were drawn from the normal distri-
bution with mean of 2 and the variance of 4. εt were drawn from the standard normal distribution.
Y t−1 has been generated from Y t−1 = 1 + 2Xt−1 + εt−1 where the distribution of Xt−1 is the same
as the distribution of Xt and εt−1 were drawn from the standard normal distribution as well.

Here, we assume that Xt is the bench mark set and there exist linkage errors between Xt and
Y t as well as between Xt and Y t−1 when all three data sets are linked together. To be consistent
with the notations from the previous sections, we drop t, the notation for time. Further, we use Y
for Y t, X1 for Xt and X2 for Y t−1.

There are three m-blocks and in each m block, the pairs (x1i, x
∗
2i) were generated according to

an independent exchangeable linkage error model. Further, given X∗
i = (1, x1i, x

∗
2i), the pairs (y∗i ,X

∗
i )

were generated according to another independent exchangeable linkage error model.
The estimators for the simulations are

1. the naive OLS estimator (ST),
2. the ratio-type estimator (R),
3. the Lahiri-Larsen estimator (A) and
4. the empirical Best Linear Unbiased Estimator, EBLUE, (C).

The assumptions on the probability of correct linkage on each m-block are
• the probability of correct linkage between Y ∗

q and X1q : λA1 = 1, λA2 = 0.95 and λA3 = 0.75
and
• the probability of correct linkage between X1q and X∗

2q : λB21 = 1, λB22 = 0.85 and λB23 = 0.8.
In this simulation, we consider the case where all the data sets are registers as well as the case

where a sample data sets are merged with other registers:
• For the case of all registers, we use three m-blocks of size 500 for each m-block.
• For the case of sample to registers case, the population size of all registers are the same and each
m-block has 2000 records. Further, we assume that, among 2000 records, half of them cannot be
linked. In this incomplete linkage case, we chose 1000 samples. The reason is that because half
of them cannot be linked, we might have around 500 samples that are linked to other registers.
Under the above scenario, the estimators were independently simulated 1000 times. The re-

gression parameters were estimated using the four estimators. The following plot boxes represent the
overall performance of the estimators.

Clearly, the ration-type estimator, the Lahiri-Larsen estimator and the EBLUE correct the
bias due to incorrect linkage, and the EBLUE outperforms other estimators, that was also noted in
Chambers (2008) where two registers were merged. These observations are consistent for all cases. It
is worth to note that the EBLUE(C) outperforms all other estimators in general. The figures clearly
show that EBLUE is the best one. However, our simulation shows that the relative biases of EBLUE,
when λs are unknown, are larger than the Lahiri-Larsen estimator and the ratio-type estimator. But
the overall relative RMSE are smaller than other estimators.
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One thing to note is that the coverage rates are all higher than 95%. This is not the case when
the number of merged data sets are two. One possible explanation is that the variance terms in these
cases are more complicated and, as the number of merged data sets increase, the variances increase
as well so that the confidence intervals are becoming wider.

5 Conclusion and further research direction

In this paper we extend the linkage error adjusting technique in regression analysis developed in
Chambers (2008) to accommodated the situation where the number of merged data sets are more
than two. We developed a ration-type estimator for the regression analysis and then it has been
extended to more general adjusted estimating function approach. These methods can deal with the
case where all the data sets are registers, as well as the case where the bench mark data sets are
sample and the others are registers. Even though it hasn’t been dealt here, it is easy to see that these
methods can naturally accommodate the case where all the data sets are sample. These methods also
extended to deal with the situation where some of sample data are failed to be linked to other registers.
However, all of these bias correction methods have to pay the price of large variance. Furthermore, in
the case of sample-registers case with non-linkage situation, the number of linked sample data, if the
the number of merged data sets are increasing, will be decreasing. Thus, we expect some sort of loss
of information by merging more data sets. We expect to overcome this limitation by adapting other
approaches.

Another limitation of these methods is that we assume that the linkage errors among the data
sets occurs randomly. However, there might be some correlation among the linkage errors. To deal
with this situation, our model should include more complicated covariance measures in the formulae
and it will be dealt in our next research paper.
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Simulation results for the linear regression

Table 1: Simulation results linear regression : in terms of relative bias, RMSE and the actual coverage
percentage for nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage
λ known λ unknown λ known λ unknown λ known λ unknown

Register to register: Simulation results for the intercept estimator
ST 128.81 128.81 129.97 129.97 0 0
R -0.64 0.23 19.62 38.98 97.2 100
A -0.51 3.73 16.52 32.24 98.8 100
C 0.43 7.13 8.02 17.86 99.0 100

Register to register: Simulation results for the first slope estimator
ST -9.94 -9.94 17.51 17.51 0 0
R 0.07 -0.06 3.43 6.67 95.9 100
A 0.05 -0.35 3.03 5.69 95.6 100
C -0.07 -0.74 1.38 3.03 97.7 100

Register to register: Simulation results for the second slope estimator
ST -19.78 -19.78 17.76 17.76 0 0
R 0.04 0.03 3.22 5.01 95.3 100
A 0.04 -0.48 2.62 4.07 97.3 100
C -0.03 -0.81 1.36 2.30 97.8 100

Sample to register: Simulation results for the intercept estimator
ST 129.75 129.75 130.98 130.98 0 0
R 0.74 0.99 20.32 39.87 95.5 100
A 0.61 4.25 17.69 33.48 96.0 100
C 0.71 7.13 8.70 18.16 97.9 100

Sample to register: Simulation results for the first slope estimator
ST -10.08 -10.08 17.71 17.71 0 0
R -0.09 -0.10 3.24 6.89 96.3 100
A -0.08 -0.37 2.86 5.91 96.8 100
C -0.09 -0.72 1.39 3.13 97.8 100

Sample to register: Simulation results for the second slope estimator
ST -19.90 -19.90 16.88 16.88 0 0
R -0.14 -0.20 3.33 5.08 95.0 100
A -0.12 -0.67 2.71 4.18 96.6 100
C -0.07 -0.84 1.38 2.36 98.8 100
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Figure 1: Simulated percentage relative errors for intercept and slope coefficients in linear regression
under random linkage errors: Sample - Register with incomplete linkage.
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