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Abstract

The paper offers simple robust algorithms for checking spatio-temporal multivariate consistency

of large volumes of measured data. The checks involve temporal data collected on a spatial grid,

as well as several related measurements collected on the same spatial grid over time. The checking

process involves computationally efficient methods of estimating expected values and variances

used to judge measurement consistency. CUSUM and EWMA plans are advocated for flagging

consistently small biased measures.

1 Introduction

Data quality is defined as data being fit for purpose (Borowski and Lenz, 2008). This paper focuses

on the narrower aspect of measurement consistency checking. This checking process helps isolate

poor measurements in large datasets. This is meant to make the task of ensuring quality data easier

by focussing the manual data checking effort on inconsistent measurements only. Measurement

inconsistency is assessed in terms of a combination of:

• Spatial consistency: The measurement is consistent with several measures at several geo-

graphical close locations.

• Temporal consistency: Measurements are consistent with measures at the same geograph-

ical location at earlier or later times.

• Multivariate consistency: Measurements are consistent with related measures made at the

same geographical location and same times.

Often we are interested in the joint spatial, temporal and multivariate consistency checking rather

than marginal consistency checks. An example of this is the checking of river flows at a specific

location given several upstream flows and rainfall measurements. If all stream flow measurements

are unusually large in the catchment at a specified time, but all are spatially consistent with each

other in the whole catchment and consistent with the local rainfall values, then these measurements

will not be classified as unusual even when they are unusual in the marginal sense. Thus, avoiding

a paradox very similar to Simpsons paradox (Blyth, 1972). However, if one of the stream flows is

unusual relative to local flow measurements made further upstream or downstream, then this will

be flagged as inconsistent. This joint multivariate, spatio-temporal consistency checking is where

we depart from other recommended univariate data quality checking.

The process of checking for unusualness is based on measurement departures from their con-

ditional expected values. The measures we condition on are called explanatory variables (e.g. for

river flows, rainfall is an explanatory variable). These explanatory variables are usually measured

at the same time, before or after the measured value being considered.

The explanatory variables are selected to provide the interpolation of y with the least absolute

error. Find the conditional expected value for the measured value (y) given the set of explanatory

variables (x) (denoted E(y|x)). Unusualness is measured in terms of how much y departs from
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E(y|x). Let the variance for this departure be denoted by σ2, then assign unusualness codes on the

scale of extremely unusual, very unusual, unusual, within the expected range, and close to expected

using the following rules:

1. ||y − E(y|x)|| > 5σ extremely unusual

2. 4σ < ||y − E(y|x)|| < 5σ very unusual

3. 3σ < ||y − E(y|x)|| < 4σ unusual

4. 2σ < ||y − E(y|x)|| < 3σ somewhat unusual

5. σ < ||y − E(y|x)|| < 2σ within expected range

6. ||y − E(y|x)|| < σ close to expected

We consider the most common more complicated situation where no duplicate measurements

are available. Section 2 discusses the consistency checking process. Section 3 looks at detecting

persistent errors commonly caused by measurement device failure. Section 4 discusses how our

quality consistency check fit into a larger QAQC framework. We end the paper with some remarks

regarding the future challenges and dealing with missing values.

2 Algorithms for measurement consistency checking

As mentioned earlier, consistency checks can be broken down into temporal, spatial, and multi-

variate checks. Multivariate spatio-temporal consistency checks are typical in environmental or

hydrological applications. Algorithms appropriate for each of these situations are described in the

subsections to follow. Note that the emphasis here is on automatic consistency checking in large

scale data collection applications such as sensor networks.

Assume an example of consistency checking stream flow measures in a catchment (Figure 1).

We develop algorithms that will check consistency of these jointly with:

• identical measurements made earlier in time at the same site for real-time checking, or made

earlier or later in time at the same site for batch checking, i.e. temporal consistency;

• identical measurements made at neighbouring sites (at the same time or earlier), i.e. spatial

consistency;

• related measurements made at the same site or neighbouring sites, i.e. multivariate consis-

tency (e.g. checking consistency of flow considering local rainfall as a related measure).

It is important to emphasis that we build interpolating time series models as opposed to fore-

casting models. In other words, we allow explanatory variables collected at the same time as the

response. Therefore, the models used are generally more accurate than the usual time series models.

Regression models for predicting the measurement is used to check for consistency. The model

predicted value is taken as the conditional expected value. The spatial variables are considered as

explanatory variables. Upstream flow measurements in a river used to explain downstream flows

are time adjusted for the duration it takes for water to flow between the two sites, i.e. if yt is the

downstream flow measurement made at time t, xt is the upstream flow measurement made at time

t, and it takes q units of time for water to flow between the upstream site and the downstream

site in the river, then the correlation between yt and xt−q should maximize the cor(yt, xt−τ ) over

all selections of τ . In most systems a constant delay of q time units is unrealiastic, but in some

circumstances, for example, where velocity is measured the delay can be estimated. Alternatively,

delays are likely to be relate to rainfall and therefore could be estimated as a function of rainfall.

Two data sources are used: training data (assumed clean) and test data. The training data

should be representative of the time period to be assessed for consistency. The test data are to be

checked for consistency. Training data provides starting values for estimated regression parameters

and are used to estimate the best time lags between explanatory variables and response values.

These parameters are used to find expected values and variances for the first measurements in the

test data.

The algorithms supplied below have two phases:
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1. The start up phase used to provide initial estimates of model parameters.

2. The recursive estimation phase used to update parameter estimates with each new observation

in the test data.

The training data are used to establish the starting estimates for parameters. Cleaned training

data directly prior to the time period being checked is the default. The training data are also used

to establish the explanatory variable temporal lags which best explained the response variable.

Data checks are carried out for each catchment separately as described below.

The process has the following steps (stream flows used as an example):

Step 1: Specify the sequence measures will be checked in the catchments.

Step 2: Specify the set of explanatory variables to be used.

Step 3: Specify the checking start and finish date.

Step 4: Specify the training dataset.

Step 5: Estimate the time delay (qi) for each variable (xi t−qi) that best predict the response.

Measures of explanatory usefulness consider here are correlation measures. That is, we examine

correlation measures as a function of qi; selecting the qi that maximises the correlation.

Step 6: Fit the regression model, e.g., for flows fit:

yt = β0 + β1 x1 t−q1 + . . .+ βk xk t−qk + α1yt−1 + α2 yt−2 + et

where:

• yt is the flow being checked for consistency measured at time t;

• xi t−qi is either an upstream flow or an upstream rainfall measurement measured at time t−qi
to account for delays;

• βi are the regression parameters associated with the influence the ith explanatory variable;

• αi are the regression parameters associated with carryover influences of measurements made

at the same site at earlier times.

Note the time series model has no moving average component only autoregressive components; this

is to avoid the need for iterative estimation.

Step 7: Check that t + 1 observation for unusualness by calculating the differences between

measured and expected (predicted using the model).

Step 8: Repeat steps 6 and 7 for all measurements in the catchment made at time t+ 1

Step 9: Update estimates using observation t + 1. Repeat steps for t + 2 until all

observations in the test sample have been exhausted,

3 Detection of errors that persist

Detecting persistent problems early is paramount for improving data quality.

3.1 Detecting persistent biases

The CUSUM plan of Page (1954) is useful for accumulating enough memory of small persistent one-

sided departures from expected for detecting them early. The CUSUM for high sided departures is

given by (SUt = 0 = SLt )

SUτ = max(0, SUτ−1 + êτ |τ−1/σ̂n τ − k)

and CUSUM for low sided departures is given by

SLτ = min(0, SLτ−1 + êτ |τ−1/σ̂n τ + k)

for τ = t + 1, t + 2, . . ., where k(> 0) is some suitable offset. Measurements are classified as

persistently biased at time τ and before if either

SLτ < −hc or SUτ > hc
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where hc is a suitable threshold designed to deliver an acceptable false alarm rate. After each bias

signal, the CUSUM statistic is restarted at zero for the calculation of the next CUSUM value. This

allows users to assess whether the bias persists after a signal. Other work on CUSUM of recursive

residuals (Ploberger and Kramer, 1992) differs slightly from our approach outlined above. We use

standardised interpolation errors whereas they use recursive residuals, the standardisation we use

involves only past data for real-time consistency checking, whereas their approach used all the data,

and unlike our CUSUM statistic, their CUSUM is not based on Page (1954) with an offset k.

3.2 Detecting increased uncertainty in measurements early

Assume that the expected variance is given by σ2
T . We recommend the following statistic

Vτ = max(σ2
T , (1− λ4)Vτ−1 + λ4ê

2
τ |τ−1).

This statistic tracks local changes in variance in the same way as the EWMA statistic tracks the

moving average, and therefore has all the advantages of the EWMA in terms of being simple and

easy to update with large volumes of data. The Vτ statistic flags a significant increase in uncertainty

from the target whenever Vτ > σ2
Thv where hv(> 1) is a suitable threshold designed to deliver an

acceptable low false alarm rate. Not allowing the Vτ statistic to drift below the expected value

helps the fast reponse to flagging any sudden increases in its value. If Vτ is allowed to drift very

much lower than expected, then, in its worst case, the monitoring process can suffer a severely

delayed response in detecting the change.

4 Concluding remarks

The paper discusses the development of simple QAQC algorithms for automatically detecting and

flagging unusual measurements. When data are missing, a first pass interpolated value is used to

patch the missing data. An alternative is to use regression trees or random forests to fit the models,

because these models can be fitted to datsets with partially missing values without the need for

patching.

Future data quality challenges include:

1. Optimal design for multivariate spatio-temporal consistency checking.

2. Scalable real-time systems.

3. Integrating the consistency checking process into a data quality assurance plan.

4. Periodic reviews to improve the measurement process.

5. Monitoring the number of errors and the percentage of missing data over time.
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