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Introduction

Statistical inference in population genetics can be quite challenging. In practice, a complex

mix of random drift, demographic and selective forces shapes the history of a population. Modeling

this history usually requires to choose an appropriate level of model complexity that captures the

essential evolutionary forces, but is not too complex given the data at hand. As the exact likelihood

of the data is intractable under more complex models, statistical inference is either based on summary

statistics, or some approximations to the likelihood. Summary statistics also play an important role

with methods of approximate inference, such as Approximate Bayesian Computation.

A convenient way to model the genealogical history of a sample is by using coalescent trees. In

the most basic setup, coalescent trees arise as an asymptotic approximation to theWright–Fisher model

letting the population size N tend to infinity and measuring time in units of 2N generations. Under

the neutral Wright–Fisher model, the resulting stochastic process is also called simple coalescent, as

more complex population genetic models lead to more complex stochastic behavior. Coalescent trees

trace the history of a DNA sample up to a most recent common ancestor, and mutations generated by

a Poisson process imposed on the coalescent tree are the source of variation in the observed sequence

data.

A convenient unit of observation is a locus, i.e. a stretch of DNA that is short enough such that

recombination can be ignored. Here, our focus will be on population genetic inference for a single

locus. The extension to multiple independent loci is straightforward.

An important quantity that captures the variation in sequence data is the scaled mutation

parameter

θ = 2Nµ.

Here N is the population size measured in the number of DNA sequences that exist for a given

locus in the population, and µ is the rate of mutation per generation for a DNA sequence taken at

the considered locus. For a diploid species, the number of sequences N equals twice the number of

individuals in the population.

In the coalescent framework, θ is introduced most easily by imposing a Poisson process on the

coalescent tree that generates mutations. The rate of this Poisson process is θ/2. Consequently, the

number of mutations S occurring on the tree has a Poisson distribution with parameter lnθ/2, given

a coalescent tree for a random sample of size n of total length Ln = ln. If a mutation, say from the

DNA base “A” to “T”, occurs at a given position, the mutated base “T” is called derived allele. The

frequency of “T” in the sample depends on where on the tree the mutation occurred.

Here, our focus is on estimating θ, using a sample consisting of DNA sequences from a locus.

Several estimators of θ have been proposed for the case where n individual reads are available each

covering the whole locus. Under the simple coalescent model, Futschik and Gach (1998) showed that

the MSE of Watterson’s estimate and Tajima’s π can be uniformly improved by shrinkage. Here, we

extend these results to cover further population genetic estimators.

Then we will show how some estimates of θ can be optimized with next generation sequencing
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reads from pooled data. We model these reads by a second stage of local independent sampling with

replacement. Simulation results will demonstrate the amount of possible improvement. As the analysis

of next generation sequencing data is becoming more and more important, this can be viewed as the

main contribution of this paper.

Estimating θ

r Several estimators of θ can be found in the literature. Watterson’s estimator θ̂W , proposed by

Ewens (1974) and Watterson (1975), is among the most popular. Given a sample of size n containing

Sn segregating sites at which mutations occurred, θ̂W is defined as

θ̂W :=
2Sn

E(Ln)
,

where Ln is the total length of the coalescent tree. The motivation behind the normalization constant

E(Ln) is to obtain an unbiased estimator of θ in the absence of knowledge of the actual total tree

length. Under the neutral Wright-Fisher model, E(Ln) =
∑n−1

i=1 1/i.

Tajima’s (1983) estimator θ̂π is defined as the average number of differences between all
(n
2

)

pairs of the sequences. It is less efficient than Watterson’s estimator, and even inconsistent. However,

θ̂π is an ingredient to Tajima’s D (Tajima (1989)), where the normalized difference between θ̂π and

θ̂W is used as a test for neutrality.

Further estimator’s of θ have been proposed such as those by Fay and Wu (2000) or by Zeng

et. al. (2006). A common property of all these estimators is that they are unbiased under the neutral

Wright-Fisher model, and that their variance is of the form

anθ + bnθ
2.(1)

See section 2.2. in Durrett (2008) for details. As will be shown below, the term bnθ
2 in the above

formula, implies that all these estimates are inadmissible and can be improved uniformly by shrinkage.

The following result implies that improvement by shrinkage is possible for any estimator with a variance

structure as in (1). It generalizes results by Futschik and Gach (2008) for θ̂W and θ̂π.

Lemma 1. Let θ̂ denote an estimate of a parameter θ > 0. Assume furthermore that E(θ̂) = θ and

Var(θ̂) = aθ + bθ2(2)

with a, b ≥ 0. Then with c := [a/θ + (b+ 1)]−1

MSE(cθ̂) ≤ MSE(θ̂),

and strict inequality holds, if c < 1, i.e. unless a = b = 0. If b > 0, an estimator uniformly better than

θ̂ is given by θ̂s :=
θ̂

b+1 .

Proof: A decomposition of the MSE into variance and squared bias leads to

MSE(cθ̂) = c2θ(a+ bθ) + (c− 1)2θ2.

By taking the derivative with respect to c, we obtain c := [a/θ + (b + 1)]−1. By observing our the

objective function is unimodal, it follows that θ̂
b+1 is uniformly better than θ̂ for b > 0. 2

Notice that b = 0 in a classical Poisson model. A uniform improvement of the maximum

likelihood estimator θ̂ is not possible here, as c depends on the unknown parameter θ. Substituting an

estimator of θ into c does not lead to a uniform improvement, as θ̂ is admissible with respect to the

MSE in a one-dimensional setting, see Johnstone (1984).

Although the total length Ln of the coalescent tree is unknown in practice, its probability

distribution is determined by the considered model. For the simple coalescent in particular, there
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exist explicit formulas for the distribution as well as the expected value and the variance of Ln. The

randomness of the observation interval of the Poisson process generating mutations leads to a situation,

where b > 0 in (1). Thus shrinkage by the factor 1/(b+1) leads to a uniform improvement of unbiased

estimators.

In the table below, we illustrate this for several well known estimates of θ. We also state the

variance of these estimates, so that the shrinkage constant b can be read off easily. For further details

on the estimates see for instance section 2.2. in Durrett (2009). In the table, ηi denotes the number

of sites where the mutant allele is present i times in a sample of size n. Furthermore cn :=
∑n−1

i=1 i−1.

estimate formula variance

Watterson (1975) θ̂W θ/cn +
∑n−1

i=1 i−2/c2nθ
2

Tajima (1983) θ̂π = 2
n(n−1)

∑n−1
i=1 i(n − i)ηi

n+1
3(n−1)θ +

2[n2+n+3]
9n(n−1) θ2

Fu and Li (1993) θ̂FL = η1 θ + 2ncn−2(n−1)
(n−1)(n−2) θ

2

Zeng, Fu, Shi, Wu (2006) θ̂L = 1
n−1

∑n
i=1 iηi

n
2(n−1)θ +

[

2 n2

(n−1)2 (
∑n

i=1 i
−2 − 1)− 1

]

θ2

Fay and Wu (2000) θ̂H = 2
n(n−1)

∑n−1
i=1 i2ηi θ +

2[36n2(2n+1)
∑n

i=1
i−2−116n3+9n2+2n−3]

9n(n−1)2 θ2

Next Generation DNA Sequencing

In recent years, massively parallel high throughput sequencing became extremely popular. This

new methodology permits to obtain a large amount of sequence information at relatively low cost,

especially when compared to classical Sanger sequencing. This may be the reason why the technology

is also known as next generation sequencing. The decreased sequencing cost makes is possible for

population geneticists to obtain data at a much larger scale, and even time series of sequence data

are now obtained in experimental evolution experiments. One practical challenge is that the reads

obtained are relatively short, which can make sequence alignment to a reference genome ambiguous

in come cases, especially at genome positions that involve repetitive sequence elements. Another

challenge is that the sequence reads contain a certain proportion of reading errors that need to be

taken into account. A popular way to assess the reliability of reads is to use Phred quality scores that

can be translated into a probability that the nucleotide obtained at a certain position is correct. See

Li et al. (2008) for details.

To avoid sequencing errors, individuals are often sequenced separately. An important parameter

describing the quality of sequencing is the coverage. The number of reads at a given DNA position

is usually assumed to follow a Poisson distribution, and the coverage is then defined as the expected

value λ of this Poisson distribution. A large enough value of λ ensures that a given position is usually

read sufficiently often such that the genotype at this position can be determined with a negligible

error probability. For diploid organisms, the coverage needs to be higher than for haploids, as two

bases need to be determined at each position.

The cost of next generation sequencing is still an important constraint when sequencing a larger

number of individuals. Thus especially for non-model organisms, pooling became popular as a cost

effective design. A pooled sample consists of several individuals that are sequenced simultaneously.

Sequencing is done by drawing with replacement small sequence chunks from the pool of individual

sequences. While being a cost saving design, data from pooling experiments are more challenging

to analyze. Besides the difficulty of distinguishing between rare alleles and sequencing errors, the

sampling process with replacement adds an additional layer of randomness. Futschik and Schlötterer

(2010) and Kofler et al. (2011) show that standard population genetic estimates become biased as a

consequence. For a further methodological discussion of the analysis of pooled samples see for instance
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Kolaczkowski et al. (2011).

Estimating θ using Pooled Next Generation Sequencing Data

Suppose we have a pool of n DNA sequences covering a locus G of interest. This leads to a

partition of G into k random intervals G = I1 ∪ I2 ∪ · · · ∪ Ik such that within each subinterval Ij , any

position is covered by the same number or reads Mj . Let uj denote the length of Ij . Then the length

of G is given by u :=
∑k

j=1 uj. Furthermore on Ij the scaled mutation parameter is θ
uj

u
, leading to

a total of θ =
∑k

j=1 θj for the whole locus. It is thus natural to estimate θj by θ̂j on Ij and define

θ̂ =
∑k

j=1 θ̂j.

To avoid biases caused by sequencing errors, the reads are filtered first, and only reads with a

certain minimum quality implied by the Phred score are used. (See Li et al. (2008).) After filtering

out those reads with insufficient quality, we may assume that the error probability for the remaining

reads is bounded by some constant ǫ. Here, values such as ǫ = 0.01 are common. Given Mj reads for

a particular subinterval Ij, a position within the interval is a candidate for a segregating site, if not

all reads at the position are identical. In such a case, 1 ≤ X < Mj of the reads are from the so called

derived allele, and Mj −X from the ancestral allele. (We follow the infinite sites model, and assume

that the probability of more than two alleles at a position is negligible.) To further protect against

sequencing errors, a site at which reads are polymorphic is only used, if the minor (less frequent) allele

has a certain minimum frequency d. The intention behind this second stage of filtering is not to loose

too many reads in the first stage by setting the inclusion threshold too high. The threshold d is chosen

as to keep the number of wrongly identified segregating sites small. See Futschik and Schlötterer

(2010) for a discussion of the choice of d, and its consequence on the probability of wrongly identifying

segregating sites.

Suppose now that our pool of reads contains a random number S of segregating sites w1, . . . , wS

within subinterval Ij after the first stage of filtering. Then the following versions of Watterson’s θ

and Tajima’s π achieve the desired protection against sequencing errors on subinterval Ij with an

appropriately chosen threshold d ≥ 1 and M = Mj.

θ̂
(d)
W,j :=

S
∑

i=1

1[d≤Xi≤M−d]

cM

where cM =
∑M−1

i=1 1/i

θ̂
(d)
π,j =

S
∑

i=1

(

M

2

)−1

Xi(M −Xi)1[d≤Xi≤M−d]

Here 1[E] denotes the indicator function of an event E. More generally, we consider estimates of the

form

θ̂(d) =
S
∑

i=1

W (M,Xi).

Notice that S is unknown in practice, and the sum is taken over all segregating sites found

within the considered subinterval. If we assume that a sufficient protection against sequencing errors

by choosing the quality score and d large enough has been chosen, the practical approach leads to

essentially equivalent estimates.

Both requiring a minimum minor allele frequency d, and the sampling with replacement leads

to biased estimators of θ. For Tajima’s π and Watterson’s θ, the following bias correction terms γ(M)

have been derived in Futschik and Schlötterer (2010): For Tajima’s π,

γ(M) =

(

M

2

)

[
M−d
∑

m=d

n−1
∑

r=1

m(M −m)P (X = m|Yn = r)r−1]−1.(3)
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Here X is the number of reads from the minor allele at a segregating site, and Yn the number of minor

alleles at this position in the pool of size n. According to the model of our reading process as binomial

sampling

P (X = m|Yn = r) =

(

M

i

)

(

r

n

)i (

1−
r

n

)M−i

.(4)

Let furthermore F(B)(x,M, p) be the binomial cumulative distribution function

F(B)(x,M, p) =
x
∑

i=0

(

M

i

)

pi (1− p)M−i .

Then for Watterson’s θ,

γ(M) =

∑M−1
i=1 i−1

∑n−1
r=1 [F(B)(M − d,M, r/n)− F(B)(d− 1,M, r/n)]1

r

.(5)

We denote the bias corrected version of such estimates by

θ̂(d)∗ = γ(M)
S
∑

i=1

W (M,Xi).

On Ij , it holds that E(θ̂
(d)∗|M) = θ

uj

u
.

Given the resulting bias corrected estimates, shrinkage can again be used as in Lemma 1 to

reduce the MSE.

Lemma 2. Under the Wright-Fisher model, the unbiased estimator θ̂
(d)∗
j of θ

uj

u
has a MSE

which is uniformly larger than that of

θ̂
(d)∗
s,j

θ̂(d)∗

bj + 1

where bj = [γ(Mj)E(W (Mj ,X1))]
2∑n−1

i=1
1
i2
.

Proof: The computations are done conditionally on M . For simplicity, we drop the subscript

j. Conditioning on the number of segregating sites in the pool, we obtain the following lower bound

on the variance:

V ar(θ̂(d)∗) = E(V ar(θ̂(d)∗|S)) + V ar(E(θ̂(d)∗|S)) ≥ V ar(E(θ̂(d)∗|S)).

Furthermore

E(θ̂(d)∗|S)) = γ(M)E(W (M,X1)|M)S

and

V ar(E(θ̂(d)∗|S)) = [γ(M)E(W (M,X1)|M)]2V ar(S).(6)

Now under neutral Wright-Fisher model

V ar(S) = θ
uj
u

n−1
∑

i=1

1

i
+ [θ

uj
u
]2

n−1
∑

i=1

1

i2
.

As in Lemma 1, it now follows that θ̂(d)∗

bj+1 is a estimate uniformly better than θ̂(d)∗, if bj is chosen as

the coefficient b in front of [θ
uj

u
]2 in (6). The result follows since γ(M)E(W (M,X1) = 1. 2

For the bias corrected versions of Watterson’s estimate θ̂
(d)∗
W,j and Tajima’s θ̂

(d)∗
π,j , Lemma 2 leads

to easily implementable improved estimates.
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Indeed under the Wright-Fisher model, the shrinkage terms are given as

bj = [γ(M)E(W (M,X1))]
2
n−1
∑

i=1

1

i2
=

∑n−1
i=1

1
i2

[
∑n−1

i=1
1
i
]2

both for θ̂
(d)∗
W,j and θ̂

(d)∗
π,j . Notice that bj is the same for all subintervals. Therefore it is not hard to see

that

k
∑

j=1

θ̂
(d)∗
s,j =

∑n−1
i=1

1
i2

[
∑n−1

i=1
1
i
]2

k
∑

j=1

θ̂
(d)∗
j

is an estimator for the overall mutation parameter θ of the locus that has a MSE uniformly smaller

than that of
∑k

j=1 θ̂
(d)∗
j

Simulation Results

In order to investigate the amount of gain achieved in practice by shrinkage estimators for pooled

next generation sequencing samples, we carried out a simulation experiment involving 1000 simulated

samples consisting of NGS reads from a locus. We estimated θ using both the bias corrected estimates

θ̂
(d)∗
W,j and Tajima’s θ̂

(d)∗
π,j . The simulation results shown in Figures 1-3 below show that shrinkage can

lead to a substantial improvement. The gain achieved by shrinkage is larger for Watterson’s θ than

for Tajima’s π. When sample size and sequencing effort increases, the improvement achieved by the

shrinkage estimate tends to decrease (Figure 3). Finally estimates tend to become better when the

threshold d is made smaller (while still keeping sufficient control of sequencing errors), but the relative

improvement achieved by shrinkage remains similar.

2 4 6 8 10

0
10

20
30

40
50

60

theta

M
S

E

2 4 6 8 10

0
10

20
30

40
50

theta

M
S

E

Figure 1: MSE of Watterson’s estimate (left panel) and Tajima’s π (right panel) in

dependance of θ for pooled samples. Pool size n = 10, expected coverage λ = 20, minimum

minor allele frequency d = 3. Solid line bias corrected estimate θ̂(d)∗, dashed line shrinkage

estimate θ̂
(d)∗
s
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Figure 2: MSE of Watterson’s estimate (left panel) and Tajima’s π (right panel) in

dependance of θ for pooled samples. Pool size n = 10, expected coverage λ = 20, minimum

minor allele frequency d = 2. Solid line bias corrected estimate θ̂(d)∗, dashed line shrinkage

estimate θ̂
(d)∗
s
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Figure 3: MSE of Watterson’s estimate (left panel) and Tajima’s π (right panel) in

dependance of θ for pooled samples. Pool size n = 50, expected coverage λ = 50, minimum

minor allele frequency d = 3. Solid line bias corrected estimate θ̂(d)∗, dashed line shrinkage

estimate θ̂
(d)∗
s
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RÉSUMÉ (ABSTRACT)

Estimating population genetic parameters is challenging, as common estimators often exhibit a

high variance. Under these circumstances it is surprising that some of the commonly used estimators

are inadmissible with respect to the mean squared error and can be uniformly improved. In this article,

we first review previous work on this subject and also provide improved versions of estimators for which

shrinkage has not yet been investigated. This work is based on classical Sanger sequencing data.

As new high throughput sequencing techniques are becoming more and more popular, we then in-

vestigate population genetic inference for such next generation sequencing data. While new sequencing

techniques provide sequence information at a fraction of cost of Sanger sequencing, individual sequenc-

ing of a even moderate samples can still be quite cost intensive. Especially for non-model organisms,

it is therefore quite popular to sequence entire pools of individuals simultaneously. Inference based on

such pooled samples raises methodological challenges, as sequencing errors cannot be readily identified.

We derive uniformly improved estimates under such an experimental design.
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