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1 Main objective

We consider parametric estimation ofStochastic Differential Equations(SDE for short), assuming
that the solution process is observed not fully but only at high-frequency discrete time points. The
objective here is a solution processX D .Xt /t2RC

to the Markovian SDE

dXt D a.Xt ; ˛/dt C b.Xt ; ˇ/dwt C c.Xt�; ˇ/dJt ; (1)

where the ingredients involved are: the unknown finite-dimensional parameter

� D .˛; ˇ/ 2 ‚˛ � ‚ˇ D ‚ � Rp;

with ‚˛ � Rp˛ and‚ˇ � Rpˇ being bounded convex domains; a standard Wiener processw and
a centeredpure-jump Lévy processJ , both being one-dimensional, and the latter characterized by
the Lévy measure� such that�.Rn¹0º/ 2 .0; 1�; the initial variableX0, with its law being possibly
unknown, independent of the driving process.w; J /; and finally, the real-valued measurable functions
a onR � ‚˛, andb andc onR � ‚ˇ , all of which are supposed to be known up to� .

We want to estimate the true parameter�0 D .˛0; ˇ0/ 2 ‚, supposed to exist, based on a high-
frequency sample

.Xt0
; Xt1

; : : : ; Xtn
/;

wheretj D tn
j D jhn, j � n, for some sampling meshhn fulfilling nh2

n ! 0 asn ! 1. We
may say that̨ controls the trend structure, whilě the noise-(martingale-)part structure. Some
asymptotic distribution results will be given, based on which we can construct confidence regions of
the parameter, and also immediately perform the Wald-type test. Although our main interest lies in
the case of non-constant coefficients, it could be also possible to deal with Lévy processes.

2 Background and Wedderburn’s quasi likelihood

The Lévy process isthe continuous-time random walk, including Wiener and Poisson processes as
special cases and serving as a building block for constructing a more general and flexible model;
see Sato [30] for a systematic and extensive account of Lévy processes. SDE driven by a Lévy
process can form a versatile-model class capturing time-varying phenomena observed in the real and

�This note was written for the presentation at the ISI 2011 Dublin (IPS007);http://www.isi2011.ie/content/index.php.
The author is grateful to all the members of the IPS007, especially, to Prof. Nakahiro Yoshida for his invitation.

�Keywords.Asymptotic inference, Gaussian and non-Gaussian quasi-likelihood, high-frequency sampling, Lévy pro-
cess, stochastic differential equation.

�Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

1

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS007) p.83

http://www.isi2011.ie/content/index.php


natureworlds, hence we have high demand for developing statistical inference for them in order to
extract valuable information from complicated time-evolution phenomena as well as to understand
their essential skeleton structure. The application fields includes, for example, signal processing
[27,29], control and optimization through time-scale separation for reducing the system complexity
[40].

It is the following common knowledge that makes the statistical problems pretty difficult: The
exact maximum likelihood estimation is mostly infeasible for the statistical model (1), since the tran-
sition probability associated withX is not available in a closed form except for a few very special
cases. Therefore the conventional statistical analyses based on the likelihood seem to have no utility,
and for this reason we have to resort to some other feasible estimation procedure. Instead of using the
“genuine” likelihood, one might think ofM -estimation procedures. Among several possibilities, we
are concerned here with some kinds ofQuasi Likelihood (QL) estimations. The concept of QL was
originally introduced by Wedderburn [39]; see also McCullagh [14]. The estimator stemming from a
QL is calledQuasi Maximum Likelihood Estimator (QMLE), which is known to have the advantage
of computational simplicity and robustness for model misspecification, in compensation for some
amount of information loss. The estimation procedure is, roughly speaking, based on the “Gaussian
approximation” of the transition distribution. We particularly call the QL of [39] theGaussian Quasi
Likelihood (GQL)and the resulting estimator theGaussian Quasi Maximum Likelihood Estimator
(GQMLE), in order to distinguish it from the forthcoming other types of the quasi likelihoods.

It has been well-established that the GQMLE is a fundamental tool in estimating possiblynon-
Gaussian and dependentstatistical models. Consider a time-series modelY1; : : : ; Yn in R with a fixed
Y0, for which we not have the exact knowledge of the transition probabilitiesL.Yj jY0; Y1; : : : ; Yj �1/,
but we instead know the conditional mean and conditional variance, saymj �1.�/ 2 R andvj �1.�/ >

0, where� 2 ‚ is an unknown parameter of interest. Then, the GQMLE is defined to be any
maximizer of

� 7! �

nX
j D1

²
logvj �1.�/ C

.Yj � mj �1.�//2

vj �1.�/

³
over‚�, the closure of‚; namely, we compute the likelihood of.Y1; Y2; : : : ; Yn/ as if the conditional
law is the normal:

L.Yj jY0; Y1; : : : ; Yj �1/ � N
�
mj �1.�/; vj �1.�/

�
:

Although it is not asymptotically efficient in general, it can serve as a widely applicable estimation
procedure, and moreover, the GQL based estimation has a merit of robustness to model misspecifi-
cation (of the Lévy measure, in our framework). Especially in the context of time series analysis,
the GQL has been a quite popular tool for semiparametric estimation, and there exists vast amounts
of literature concerning asymptotics of the GQMLE for models with possibly non-Gaussian error se-
quence; among others, we refer to Hall and Yao [8] and Straumann and Mikosch [33] for a class of
conditionally heteroscedastic time series models, and Bardet and Wintenburger [2] for multidimen-
sional causal time series, as well as the references therein.

One of our goal is to clarify what will occur if we follow the GQL based estimation procedure
in our model in the presence of jumps. On the one hand, there already exist efficiency results ifX

is a diffusion (wherec.x; ˇ/ � 0); see Yoshida [41, 42], Kessler [11], and Gobet [6] as well as the
references therein. One point is that the optimal rates of convergences ofǑ

n is
p

n, while
p

nhn for
Ǫn. Making use of this fact, Uchida and Yoshida [37] have proposed an adaptive estimation procedure
based on a kind of GQMLE. Estimation of diffusions is still an active research area. See also Sørensen
[32], whose bibliography includes many existing results concerning martingale estimating functions
for discretely observed diffusions (not necessarily at high frequency). However, on the other hand, the
issue has not been addressed enough in the presence of (possibly of infinite-variation) jumps, our main
concern here: well, one can expect the GQL estimation is then far from being optimal, nevertheless,
its implementation ease is worth being mentioned. It can be deduced that the GQMLE for (1) is then
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asymptoticallynormally distributed at rate
p

nhn for both ˛ andˇ, implying that existence of any
jump component slows down the rate of convergence ofǑ

n. Moreover, by means of thePolynomial
type Large Deviation Inequality (PLDI)of Yoshida [42], we could derive the convergence of its
moments to corresponding ones of the limit centered Gaussian distribution. The latter convergence
especially serves as a fundamental tool when studying bias, variance, and etc., of statistics depending
on the estimator; see Uchida and Yoshida [34,35,36] for the issue of model assessment.

As alternatives to the GQL, we will also present other types of QL doing better jobs than the
GQMLE under some regularity conditions, when the continuous part of (1) vanishes.

3 Quasi likelihoods for the SDE observed at high-frequency

3.1 An overview

Here we describe the underlying idea of the QL framework for the model (1). Let us write

�j Y D Ytj � Ytj �1

for any processY , andgj �1.a/ D g.Xtj �1
; a/ for a functiong.�; �/. We then think of the Euler-

Maruyama approximation ofXtj givenXtj �1
:

Xtj D Xtj �1
C

Z tj

tj �1

a.Xs; ˛/ds C

Z tj

tj �1

b.Xs; ˇ/dws

Z tj

tj �1

c.Xs�; ˇ/dJs

� Xtj �1
C aj �1.˛/hn C bj �1.ˇ/�j w C cj �1.ˇ/�j J (2)

underP� , the image measure ofX associated with� . Utlizing (2) more or less, we try to fit some
specific distribution for the transition law underP� , sayL� .Xtj jXtj �1

/. If c.x; ˇ/ � 0, so thatX
is a diffusion, then the local-Gauss approximation is anefficientchoice (cf. Section2 for relevant
references):

L� .Xtj jXtj �1
/ � N .Xtj �1

C aj �1.˛/hn; bj �1.ˇ/2hn/: (3)

But we are now focusing onX having jumps. Below, we will provide a framework including some
non-GaussianQL estimation.

Indeed, how to construct the QL could be a lot of things. There exist much less literature con-
cerning non-Gaussian QL, compared with the Gaussian one. We refer to Fan et al. [4] for an adaptive
non-Gaussian quasi likelihood estimation of a time seres model.

To give a unified account of our QL estimation procedures, let us introduce

v.x; ˇ/ WD b.x; ˇ/2
C c.x; ˇ/2;

which may be regarded as a local-variance function. Our QL then takes the form

Mn.�/ D

nX
j D1

log

´
1

h
1=

n vj �1.ˇ/1=2

f

 
�j X � aj �1.˛/hn

h
1=

n vj �1.ˇ/1=2

!µ
; (4)

for some probability density functionf onR, which is smooth enough and� -free. Here
 denotes
the activity index of the driving noise defined as follows:
 D 2 if b.x; ˇ/ 6� 0, while 
 2 .0; 2/ if
b.x; ˇ/ � 0, c.x; ˇ/ 6� 0, andJ admits the local stable approximation in small time (see Section
3.3).

The corresponding QMLE is then defined to be any measurable mapping

O�n 2 argmax
�2‚�

Mn.�/:
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By imposing some regularity conditions onf (smoothness, etc.), we could derive an asymptotic
distribution results for the QL estimator corresponding to (4). However, needless to say, (4) is noth-
ing but a formal setting and what is crucial ishow to pick a specificf and to make the estimation
procedure implementable.

The table summarizes the rates of convergence concerning the three QL, which will be mentioned
a bit later: in the all cases, the asymptotic distribution of the QMLE is normal as soon asnhn ! 1.

Quasilikelihood Estimation speeds
˛ ˇ

Gauss(whenc.x; ˇ/ � 0)
p

nhn

p
n

Gauss(whenc.x; ˇ/ 6� 0)
p

nhn

p
nhn

Non-Gaussian stable
p

nh
1�1=

n

p
n

Laplace(for Lévy OU process only, for now)
p

nh
1�1=

n �

Fromthe table one may immediately notice the importance of testing the presence of jump part, be-
cause the rate of convergence of the GQMLEǑ

n changes so that we cannot set lim supn!1 nhn < 1

in order to derive its consistency. Even whennhn ! 1, apart from the rate of convergence, the
asymptotic covariance matrix takes a different form according as jumps do or do not exist. This di-
rectly leads to improper constructions of confidence zones. Fortunately, we do have a handy test statis-
tic for the noise normality based on partial sums of the self-normalized powered residuals [22], and
we have now developed an extension. The proposed test turned out to be asymptotically distribution-
free under null and consistent against the presence of arbitrary jump part. The full details of the above
results will be reported in due course in the papers prepared for publication: [23, 24,25,26].

As mentioned before, we could prove not only the asymptotic distribution (weak convergence)
results but also the PLDI for some QL random fields in the scope of deriving the convergence of
moments of (normalized)O�n. More specifically, the PLDI is formulated as follows (see Yoshida [42]
for details). We define random fieldsZn W Un.�0/ WD ¹u 2 Rp W �0 C r

�1=2
n u 2 ‚º ! .0; 1/ by

Zn.u/ D Zn.uI �0/ WD exp
®
Mn.�0 C r�1=2

n u/ � Mn.�0/
¯
:

Then Oun WD r
1=2
n . O�n � �0/ 2 argmax�2‚ Zn.�/. We say that the PLDI holds if, given anM > 0,

there exists a constantCM > 0 such that the following estimate holds true:

sup
n2N

P0

�
sup

juj>r

Zn.u/ � e�r

�
�

CM

rM
; r > 0; (5)

whereP0 WD P�0
. Under (5), the random sequence. Oun/n2N is Lq.P0/-bounded for anyq 2 .0; M/

since

sup
n2N

P0Œj Ounj > r� � sup
n2N

P0

�
sup

juj>r

Zn.u/ � Zn.0I �0/

�
D sup

n2N
P0

�
sup

juj>r

Zn.u/ � 1

�
�

CM

rM

for everyr > 0. Therefore, as soon asOun ! Ou0 (P0-weakly) we haveEŒ'. Oun/� ! EŒ'. Ou0/� for
every continuous' such thatj'.x/j � C.1 C jxj/q. Taking' in various ways, we can verify the
asymptotic behavior of the bias, the mean squared error, etc., ofOun. See also Chan and Ing [3].
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3.2 Gaussian quasi-likelihood and the least-squares estimation

In case of non-degenerate diffusion coefficient, we assume thatEŒJt � D 0 andEŒJ 2
t � D t for each

t 2 RC, and thatX is exponentially ergodic; see Masuda [16,18,19] and Kulik [12] for how to verify
the ergodicity. Based on (2), we then consider the local-Gauss approximation (3), so that the QL (4)
then becomes the GQML by taking
 D 2 andf to be the standard normal density:

Mn.�/ D �

nX
j D1

²
logvj �1.�/ C

.�j X � aj �1.˛/hn/2

vj �1.ˇ/hn

³
:

In this case the Lévy measure� of J need not to be specified. Note thatwe may use the GQL even
whenb.x; ˇ/ � 0.

Also, let us note that the least-squares (and trajectory-fitting) type estimation formally corre-
sponds to, say, the GQL estimation with known (constant) one-step conditional variance. See Masuda
[17] for such drift-estimation procedures for possibly non-Markovian ergodicX . The least-squares
type does not pay much attention to the martingale term, i.e., the diffusion coefficient in case of
diffusions, thereby being particularly practicable while inefficient.

In case of compound-Poisson jump part, there exist efficient threshold estimation (jump-detection
filter) approaches; see Mancini [15], Shimizu and Yoshida [31], and Ogihara and Yoshida [28] for
details.

Once again, note that we are inevitably forced to make the assumptionnhn ! 1 as long as
using the GQL. Some time-varying phenomena might indeed seem more likely to be a diffusion
process over “long-time” scale rather than over “short-time” scale. However, we generally do not
know any specific relation between the model- and actual-time scales. However, as is mentioned in
the next sections, the conditionnhn ! 1 may be removed whenb.x; ˇ/ � 0.

3.3 Non-Gaussian stable quasi-likelihood

In case of the pure-jump case, so that (1) becomes

dXt D a.Xt ; ˛/dt C c.Xt�; ˇ/dJt ; (6)

we assume that� behaves like the symmetric stable Lévy measure near the origin. It can be shown
under suitable conditions on� thatL.h

�1=

n Jhn

/, the law of normalized increment ofJ in small time,
admits a density, sayphn

, which is approximately the strict
 -stable density�
 corresponding to the
characteristic functionu 7! exp.�juj
 /, where
 2 .0; 2/. More specifically, we can find a constant
a� > 0 for which the uniform local-limit result holds true (the proof is similar to Masuda [21, Lemma
4.4]):

sup
y2R

ˇ̌
phn

.y/ � �
 .y/
ˇ̌

� C ha�
n :

In this case, the parameter
 2 .0; 2/ denotes the Blumenthal-Getoor index ofJ . Many popular
pure-jump Lévy processes admits the local-stable approximation, each suitable
 depending on the
degree of�-mass around the origin: for example, the generalized hyperbolic (except for the normal
gamma), Meixner, tempered stable Lévy processes, and so on. Let us emphasize that the tail behavior
of � doesnotmatter.

Note that, since (2) says

�j .�/ WD
�j X � aj �1.˛/hn

h
1=

n cj �1.ˇ/

�
�j J

h1=


underP� , one may expect that¹�j .�0/ºj �n can be approximated in some suitable sense underP0

by the i.i.d. sequence¹h�1=

n �j J ºj �n. This in turn implies that, as soon asf is good enough we
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canapply the generalM -estimation theory together with the martingale limit theory, as was done
in the diffusion case (see the references cited in Section3.2). We may call (4) with f D �
 the
(non-Gaussian)Stable Quasi Likelihood (SQL for short), including the fully explicitCauchy quasi
likelihood. Under suitable conditions, we could deduce the (mixed-)normal asymptotic law of�p

nh1�1=

n . Ǫn � ˛0/;

p
n. Ǒ

n � ˇ0/
�

with the specific form of the asymptotic (random) covariance matrix.
We conjecture that the SQL estimator of.˛; ˇ/ thus obtained is rate-optimal. Indeed, Kawai and

Masuda [10] revealed that it is true for the normal inverse Gaussian Lévy process. However, we do
not yet have the local asymptotic (mixed-)normality in a general model (1).

The SQL can target a rather rich class of infinite-variationJ . We believe that the SQL-based
approach serves as one of fundamental devices for estimating (6) based on high-frequency data.

3.4 Laplace quasi-likelihood

There is yet another type of non-Gaussian QL method calledLaplace Quasi Likelihood (LQL)es-
timation, which may be more familiar under the name of the least absolute deviation estimation
(L1-minimum-distance estimation). It amounts to considering the QL associated withx 7! f .x/ WD

c exp.�cjx � �j/=2, x 2 R, � 2 R, with c > 0 being known. Unfortunately, it seems hard to
deal with (6) in full generality because of the non-smoothness in� of the QL. In this case we could
target only the drift parameter̨ D .˛1; ˛2/ of the Lévy-Ornstein-Uhlenbeck process having the
continuous-time first-order autoregressive structure. We here only mention the pure-jump case, keep-
ing the local
 -stable approximation for the distributionsL.h

�1=

n Jhn

/ in force. The SDE in question
is then

dXt D .˛1 � ˛2Xt /dt C ˇdJt :

Under suitable conditions, we can derive the asymptotic (mixed-)normality for
p

nh1�1=

n . Ǫn � ˛0/:

The asymptotics is carried out by utilizing the convexity argument. We refer to Masuda [21] for
details of the ergodic case.

One may more generally think ofLr -estimation (r > 0), corresponding to the quasi likelihood
associated with the probability densityx 7! f .x/ WD rc1=r exp.�cjx � �jr/=¹2�.1=r/º, x 2 R.
However, in view of analytical tractability and optimization-programming convenience, the afore-
mentioned Laplace QL is of special interest, and we could not find any great advantage for studying
the case ofr … ¹1; 2º.

4 Discussions

Let us give some remarks on our results and mention some ongoing subjects.

� For the GQL, it is straightforward to extend the result so as to subsume multivariateX . How-
ever, multivariate analogues for the other QL treated here would not be straightforward to for-
mulate.

� Concerning the pure-jump case, we have seen that the SQL or LQL estimators of the drift
parameter underhn D 1=n exhibits different rate of convergence from the diffusion case, so
that the case of fixed-domain infill asymptotics is allowed.

The asymptoticmixed-normalresults in that case have been derived through the continuous-
time martingale characterization of the conditionally Gaussian martingale. See Jacod [9] for
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thegeneral limit theorem, the main idea of which has already appeared in Genon-Catalot and
Jacod [5]. The rate of convergence and simple rate-optimal estimation were studied in Masuda
[20] for stable Lévy processes; see also Aït-Sahalia and Jacod [1] for the asymptotic behavior
of the Fisher information in a more general model setting. Let us note that we can deal with
time-inhomogeneous case without essential change if lim supn!1 nhn < 1.

� In order to derive the asymptotic normality results even for heavy-tailedX (containing cases
of heavy-tailed and long-memory diffusions such as a stationary diffusion process with Student
marginal law, e.g., Hairer [7] and Veretennikov [38]), we could consider thepredictably tapered
(self-weighted)versions; see Masuda [21] for the case of LQL. This amounts to just putting in
(4) a suitable non-negative weight function� , so that

Mn.�/ D �

nX
j D1

�j �1

²
logvj �1.�/ C

.�j X � aj �1.˛/hn/2

vj �1.ˇ/hn

³
:

Although this is a trivial change, the tapering effect of the weight can be essential.
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