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We present estimation methods for data that are modelled as integrals of a diffusion process over

disjoint time-intervals. An example of an application is realized volatility in financial econometrics, see

e.g. Bollerslev & Zhou (2002). Such models are also used in fields of engineering and of the sciences.

The analysis of the records of the concentration of oxygen isotopes in ice-core data from Greenland

and Antarctica in an example, see e.g. Ditlevsen, Ditlevsen & Andersen (2002). Ice-core data are used

to investigate the paleo-climate.

Let X be a d-dimensional diffusion process given as the solution to the stochastic differential

equation

dXt = b(Xt; θ)dt + σ(Xt; θ)dWt,(1)

where σ is a d × d-matrix and W a d-dimensional standard Wiener process. We consider partial

observations of the type

Yi =

∫ ti

ti−1

k(Xs)ds + Zi, i = 1, . . . , n,(2)

where t0 = 0 < t1 < t2 < . . . < tn, where k is a real-valued function, and where the d-dimensional

measurement errors Zi are independent and identically distributed and independent of X. Typical

examples of the function k are k(x) = x1 or k(x) = x1+ · · ·+xd, where xi denotes the ith coordinate of

x. The observations form a non-Markovian stochastic process, which complicates statistical inference.

Estimation based on observations that are integrals of a diffusion (d = 1, k(x) = x) with no

measurement error was studied by Gloter (2000), Bollerslev & Zhou (2002), Ditlevsen & Sørensen

(2004), and Gloter (2006), while maximum likelihood estimation in the case of measurement errors

was investigated by Baltazar-Larios & Sørensen (2010).

Prediction-based estimating functions

First we present an approach using prediction-based estimating functions, which were introduced

in Sørensen (2000). A contemporary review can be found in Sørensen (2011a). For a general review

of estimating function techniques for diffusion-type models, see Sørensen (2011b).

Suppose that we have observed the random variables Y1, . . . , Yn that form a stationary stochastic

process, the distribution of which is parametrised by Θ ⊆ IRp. Assume that Eθ(Y
2m
i ) < ∞ for all

θ ∈ Θ for some m ∈ IN. For each i = r +1, . . . , n and j = 1, . . . ,m let the class {Z(i−1)
jk | k = 1, . . . , qj}

be a subset of the random variables {Y κ
i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , j}, where Z

(i−1)
j1 is always equal to

1. We wish to predict Y
j
i by means of linear combinations of the Z

(i−1)
jk -s for each of the values of i

and j listed above and then to use suitable linear combinations of the prediction errors to estimate

the parameter θ. Let Pi−1,j denote the space of predictors of Y
j
i , i.e. the space of square integrable

random variables spanned by Z
(i−1)
j1 , . . . , Z

(i−1)
jqj

. The elements of Pi−1,j are of the form aT Z
(i−1)
j ,

where aT = (a1, . . . , aqj
) and Z

(i−1)
j = (Z

(i−1)
j1 , . . . , Z

(i−1)
jqj

)T are qj-dimensional vectors. In this paper

vectors are column vectors and T denotes transposition.
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We will use estimating functions of the type

Gn(θ) =
n
∑

i=r+1

m
∑

j=1

Π
(i−1)
j (θ)

[

Y
j
i − π̂

(i−1)
j (θ)

]

(3)

where Π
(i−1)
j (θ) is a p-dimensional data dependent vector of weights, the coordinates of which belong

to Pi−1,j, and where π̂
(i−1)
j (θ) is the minimum mean square error predictor of Y

j
i in Pi−1,j , which is

the usual L2-projection of Y
j
i onto Pi−1,j . Define Cj(θ) as the covariance matrix of (Z

(r)
j2 , . . . , Z

(r)
jqj

)T

for the parameter value θ and bj(θ) = (Covθ(Z
(r)
j2 , Y

j
r+1), . . . ,Covθ(Z

(r)
jqj

, Y
j
r+1))

T . Then we have

π̂
(i−1)
j (θ) = âj(θ)T Z

(i−1)
j

where âj(θ)T = (âj1(θ), âj∗(θ)T ) with âj∗(θ)T = (âj2(θ), . . . , âjqj
(θ)) defined by

âj∗(θ) = Cj(θ)−1bj(θ)(4)

and

âj1(θ) = Eθ(Y
j
1 ) −

qj
∑

k=2

âjk(θ)Eθ(Z
(r)
jk ).(5)

Thus to find π̂
(i−1)
j (θ), j = 1, . . . ,m, we need to calculate moments of the form

Eθ(Y
κ
1 Y

j
k ), 0 ≤ κ, j ≤ m, k = 1, . . . , r.(6)

If the original diffusion model (1) is exponentially ρ-mixing, then the observations inherit this

property. In such cases r will usually not need to be chosen particularly large. If Y
j
i is restricted to

have mean zero, we need not include a constant in the space of predictors, i.e. we need only the space

spanned by Z
(i−1)
j2 , . . . , Z

(i−1)
jqj

. In many situations m = 2 with Z
(i−1)
jk = Yi−k, k = 1, . . . , r, j = 1, 2

and Z
(i−1)
2k = Y 2

i+r−k, k = r + 1, . . . , 2r, will be a reasonable choice. Including predictors in the form

of lagged terms Yi−kYi−k−l for a number of lags l’s might also be of relevance.

The choice of the weights Π
(i−1)
j (θ) in (3) for which the asymptotic variance of the estimators is

minimized is the Godambe optimal prediction-based estimating function, that was derived in Sørensen

(2000). The optimal estimating function of the type (3) can be written in the form

G∗

n(θ) = A∗(θ)
n
∑

i=r+1

H(i)(θ),(7)

where

H(i)(θ) = Z(i−1)
(

F (Yi) − π̂(i−1)(θ)
)

,(8)

with F (x) = (x, x2, . . . , xm)T , π̂(i−1)(θ) = (π̂
(i−1)
1 (θ), . . . π̂

(i−1)
m (θ))T and

Z(i−1) =





















Z
(i−1)
1 0q1

· · · 0q1

0q2
Z

(i−1)
2 · · · 0q2

...
...

...

0qm 0qm · · · Z
(i−1)
m





















.(9)

Here 0qj
denotes the qj-dimensional zero-vector. Finally,

A∗(θ) = ∂θâ(θ)T C̄(θ)M̄(θ)−1,(10)
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with

M̄(θ) = Eθ

(

H(r+1)(θ)H(r+1)(θ)T
)

+(11)

∞
∑

k=1

[

Eθ

(

H(r+1)(θ)H(r+1+k)(θ)T
)

+ Eθ

(

H(r+1+k)(θ)H(r+1)(θ)T
)]

,

C̄(θ) = Eθ

(

Z(i−1)(Z(i−1))T
)

,(12)

and

â(θ)T =
(

â1(θ)T , . . . , âm(θ)T
)

,(13)

where âj(θ) is given by (4) and (5). A necessary condition that the moments in (11) exist is that

Eθ(Y
4m
i ) < ∞ for all θ ∈ Θ. For (7) to be optimal we need that the matrix ∂θâ(θ)T has full rank.

The matrix M̄ (θ) is invertible under weak conditions.

For exponentially mixing diffusions (11) can in practice often be truncated so that only relatively

few terms need to be calculated. In practice, it is usually also a good idea to replace A∗(θ) by A∗(θ̄n),

where θ̄n is a
√

n-consistent estimator of θ. This has the advantages that (11) need only be calculated

once and that a simpler estimating equation is obtained, while the asymptotic variance of the estimator

is unchanged. The estimator θ̄n can, for instance, be obtained from an estimating function similar to

(7), where A∗(θ) has been replaced by a suitable simple matrix independent of θ, but such that the

estimating equation has a solution. A simple possibility is to use the first p coordinates of H(i)(θ),

where p is the dimension of the parameter. In order to calculate (11), we need mixed moments of the

form

Eθ[Y
k1

1 Y k2

i Y k3

j Y k4

ℓ ], 1 ≤ i ≤ j ≤ ℓ k1 + k2 + k3 + k4 ≤ 4m(14)

where ki, i = 1, . . . , 4 are non-negative integers.

To find the moments (6), we use that by the binomial formula,

Eθ(Y
k1

1 Y k2

ℓ ) = Eθ

(

(B1 + Z1)
k1(Bℓ + Zℓ)

k2

)

=
k1
∑

i1=0

k2
∑

i2=0

(

k1

i1

)(

k2

i2

)

Eθ(B
i1
1 Bi2

ℓ )Eθ(Z
k1−i1
1 )Eθ(Z

k2−i2
ℓ )

(with a slight modification for ℓ = 1), where

Bi =

∫ ti

ti−1

k(Xs)ds.

The distribution of the measurement error Zi can depend on components of the unknown parameter

θ. The moments Eθ(B
i1
1 Bi2

ℓ ) can be found by

E
(

Bi1
1 Bi2

ℓ

)

=

∫

A
E
(

k(Xv1
) · · · k(Xvi1

)k(Xu1
) · · · k(Xui2

)
)

dui2 · · · du1 dvi1 · · · dv1,

where 1 ≤ ℓ and A = [0 , t1]
i1 × [tℓ−1 , tℓ]

i2 . Thus we need to calculate mixed moments of the type

E(k(Xt1) · · · k(Xtℓ)). Such mixed moments can be determined by simulation. A mixed moment of the

form (14) can similarly be expressed as an integral of expectations of the type E(k(Xt1) · · · k(Xtℓ)).

Sometimes these mixed moments and their integral can be found explicitly such that an explicit

optimal estimating function is available. This is, for instance, the case for the Pearson diffusions, see

Forman & Sørensen (2008), when d = 1 and k(x) = x. For these diffusions, E(Xt1 · · ·Xtℓ) depends on

t1, . . . , tℓ through sums and products of exponential functions.
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Example 1 Consider observations where d = 1 and k(x) = x, where the diffusion process X is the

square root process

dXt = −β(Xt − α)dt + τ
√

XtdWt, X0 > 0,

and where there are no measurement errors. We will find a prediction-based estimating function with

F (x) = (x, x2)T and with predictors given by π
(i−1)
1 = a1,0 + a1,1Yi−1 and π

(i−1)
2 = a2,0. Then the

minimum mean square error predictors are

π̂
(i−1)
1 (Yi−1; θ) = µ (1 − a(β)) + a(β)Yi−1,

π̂
(i−1)
2 (θ) = α2 + ατ2β−3∆−2(e−β∆ − 1 + β∆)

with

a(β) =
(1 − e−β∆)2

2(β∆ − 1 + e−β∆)
.

The optimal prediction-based estimating function is

n
∑

i=1







1

Yi−1

0






[Yi − π̂

(i−1)
1 (Yi−1; θ)] +

n
∑

i=1







0

0

1






[Y 2

i − π̂
(i−1)
2 (θ)],

from which we obtain the estimators

α̂ =
1

n

n
∑

i=1

Yi +
a(β̂)Yn − Y1

(n − 1)(1 − a(β̂))

n
∑

i=2

Yi−1Yi = α̂(1 − a(β̂))
n
∑

i=2

Yi−1 + a(β̂)
n
∑

i=2

Y 2
i−1

τ̂2 =
β̂3∆2∑n

i=2

(

Y 2
i − α̂2

)

(n − 1)α̂(e−β̂∆ − 1 + β̂∆)
.

The estimators are explicit apart from β̂, which can easily be found numerically by solving a non-linear

equation in one variable. For details, see Ditlevsen & Sørensen (2004). ©

An interesting more general case is that of hypoelliptic stochastic differential equations, where

one or more components are not directly affected by the Wiener process and hence are smooth. If a

smooth component is observed at discrete time points, then we obtain data of the type considered in

this paper. Hypoelliptic stochastic differential equations are, for instance, used to model molecular

dynamics, see e.g. Pokern, Stuart & Wiberg (2009). A simple example is the stochastic harmonic

oscillator

dX1,t = −(β1X1,t + β2X2,t) dt + γdWt

dX2,t = X1,t dt,

β1, β2, γ > 0, where the position of the oscillator, X2, is observed at discrete time points.

Maximum likelihood estimation

The likelihood function for a discretely sampled integrated diffusion with observation errors

is in almost all cases not explicitly available. In this section an EM-algorithm for the case d = 1

proposed by Baltazar-Larios & Sørensen (2010) is outlined. It is based on the fact that the data can

be viewed as incomplete observations from a model with a tractable likelihood function. The full data
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set is a continuous time record of the diffusion process and the observation errors. We can therefore

find maximum likelihood estimates by applying the Expectation-Maximization (EM) algorithm, see

Dempster, Laird & Rubin (1977). To do so we need to calculate the conditional expectation of the

log-likelihood function for the full model given the observations. This is done by simulating sample

paths of the diffusion process given the data using ideas from Chib, Pitt & Shephard (2006).

In the following we assume that the measurement errors, Zi are normal distributed with mean

zero and variance τ2. Then, conditionally on the sample path of X, the observations Yi, i = 1, . . . , n

are independent and normal distributed:

Yi | {Xt : t ∈ [0, tn]} ∼ N

(

∫ ti

ti−1

Xsds, τ2

)

,(15)

The probability measures corresponding to the full observation of a diffusion sample path in the

time interval [0, tn] are in general singular because the diffusion coefficient depends on the parameter

θ. In order to obtain a likelihood function, we use the standard 1-1 transformation

h(x; θ) =

∫ x

x∗

1

σ(u; θ)
du,(16)

where x∗ is some arbitrary element of the state space of X. By Ito’s formula

Ut = h(Xt; θ)

satisfies the stochastic differential equation

dUt = µ(Ut; θ)dt + dWt,(17)

with

µ(u; θ) =
b
(

h−1(u; θ); θ
)

σ (h−1(u; θ); θ)
− σ′

(

h−1(u; θ); θ
)

2
,

where σ′ denotes the derivative of σ w.r.t. x.

It follows from (15) that the likelihood of Y conditional on the sample path of U in [0, tn] is

L(θ;Y1, . . . , Yn |Ut, t ∈ [0, tn]) =
n
∏

i=1

φ(Yi;

∫ ti

ti−1

h−1(Us; θ)ds, τ2)(18)

where φ(u; a1, a2) denotes the density of the normal distribution with mean a1 and variance a2 eval-

uated at u. By Girsanov’s formula, the log-likelihood function for θ based on the full data set

Ut, t ∈ [0, tn] and Y = (Y1, . . . , Yn) is given by

log L(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) =
n
∑

i=1

log φ(Yi;

∫ ti

ti−1

h−1(Us; θ)ds, τ2)(19)

+ a(Utn ; θ) − a(U0; θ) − 1

2

∫ tn

0

(

µ(Ut; θ)2 + µ′(Ut; θ)
)

dt,

where

a(u; θ) =

∫ u

µ(x; θ)dx.

We can now apply the EM-algorithm to the full log-likelihood function (19) to obtain the maxi-

mum likelihood estimate of the parameter θ. As the initial value for the algorithm, let θ̂ be any value

of the parameter vector. Then the EM-algorithm works as follow.
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1. E-STEP.

Generate M sample paths of the diffusion process X, X(k), k = 1, . . . ,M , conditional on the

observations Y1, . . . , Yn using the parameter value θ̂, and calculate

g(θ) =
1

M − M0

M
∑

k=M0+1

log L(θ;Y1, . . . , Yn, h(X
(k)
t ; θ̂), t ∈ [0, tn]),

for a suitable burn-in period M0 and for M sufficiently large.

2. M-STEP.

θ̂ = argmax g(θ).

3. Go to 1.

To implement this algorithm, the main issue is how to generate sample paths of X condition-

ally on Y1, . . . , Yn, where the relation between the Yis and X is given by (2). The algorithm must

produce a sequence X(k), k = 1, . . . ,M , that is sufficiently mixing to ensure that g(θ) approximates

the conditional expectation of the full log-likelihood function (19) given the data. This can be done

by means of a Metropolis-Hastings algorithm. However, if the sample path in the entire time interval

[0, tn] is updated in one step, the rejection probability is typically very large. Therefore it is more

efficient to randomly divide the time interval into subintervals and update the sample path in each of

the subintervals conditional on the rest of the sample path. This corresponds to simulating a (con-

ditional) diffusion bridge in each subinterval (except the end-intervals). For details of the algorithm,

see Baltazar-Larios & Sørensen (2010).

An essential step in the algorithm is to simulate a diffusion bridge (not conditional on the

observations). This is done by applying the method for approximate diffusion bridge simulation

proposed by Bladt & Sørensen (2009). This method is particularly useful and accurate in relatively

long intervals, which is important in the present application. The main idea of the technique (in

the case of a diffusion bridge in the time interval [0, 1]) is to let one diffusion process move forward

from time zero out of one given point, a, until it meets another diffusion process that independently

moves backwards from time one out of another given point, b. Conditional on the event that the

two diffusions intersect, the process constructed in this way is an approximation to a realization of a

diffusion bridge between a and b. The diffusions can be simulated by means of simple procedures like

the Milstein scheme, see Kloeden & Platen (1999). The method is therefore very easy to implement.

An alternative method that provide exact diffusion bridges has been proposed by Beskos, Pa-

paspiliopoulos & Roberts (2006). When the the drift and diffusion coefficients satisfy certain bound-

edness conditions, this algorithm is relatively simple, but under weaker condition it is more complex.

Bladt & Sørensen (2009) showed that the computational complexity of their method is linear in the

length of the interval where the diffusion bridge is defined, while a simulation study indicated that

for the method in Beskos, Papaspiliopoulos & Roberts (2006), the CPU time increases exponentially

with the interval length.

Example 2 Consider the Ornstein-Uhlenbeck process, which is a solution of the stochastic differential

equation

dXt = −αXtdt + σdWt,

where α > 0 and σ > 0. Here Ut solves the stochastic differential equation

dUt = −αUtdt + dWt,
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and the full log-likelihood function (19) is given by

log L(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn])(20)

=
n
∑

i=1

log φ

(

Yi;σ

∫ ti

ti−1

Usds, τ2

)

+
α

2
(U2

0 − U2
tn + tn) − α2

2

∫ tn

0
U2

t dt,

where θ = (α, σ, τ2).

In the M-step the estimator θ̂ is given by

α̂ =
tn(M − M0) +

∑M
k=M0+1

[

(U
(m)
0 )2 − (U

(m)
tn

)2
]

2
∑M

k=M0+1

∑n
i=1

∫ ti
ti−1

(U
(m)
t )2dt

,

σ̂ =

∑M
k=M0+1

∑n
i=1 Yi

∫ ti
ti−1

U
(m)
t dt

∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(m)
t dt)2

.

and

τ̂2 =
(M − M0)(

∑n
i=1 Y 2

i )
[

∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(m)
t dt)2

]

−
[

∑M
k=M0+1

∑n
i=1 Yi

∫ ti
ti−1

U
(m)
t dt

]2

n(M − M0)
∑M

k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(m)
t dt)2

.
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RÉSUMÉ (ABSTRACT) — optional

Methods are presented for analysing data that are integrals of a diffusion process, i.e. the solu-

tion to a stochastic differential equation, observed with measurement error. First a relatively simple

methodology is outlined: prediction-based estimating function. Then we present in detail a computa-

tionally more demanding method for obtaining maximum likelihood estimates. The data can be viewed

as incomplete observations from a model with a tractable likelihood function. Therefore a simulated

EM-algorithm is used to obtain maximum likelihood estimates of the model parameters. An essential

part of the algorithm is a recent simple method for approximate simulation of diffusion bridges, which

is used to simulate the full hidden data given the observations.
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