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1 Introduction

The progressive physical deterioration to which members of many species are subject with advancing

age has long seemed to present a challenge to intuitions of natural selection. “It is indeed remark-

able that after a seemingly miraculous feat of morphogenesis a complex metazoan should be unable

to perform the much simpler task of merely maintaining what is already formed,” wrote biologist G.

Williams [11]. The modern theory of the evolution of ageing, to which Williams contributed significant

insights, is generally considered to have begun with Peter Medawar’s 1951 inaugural lecture at Uni-

versity College London delivered in 1951 [7], in which he called the origin of senescence “an unsolved

problem in biology.” His idea, called “mutation accumulation”, presents senescence as a side-effect of

the interplay between natural selection and mutation, a special version of his more general concept of

“genetic load”. Ongoing random mutation spews mostly deleterious changes into the genome. Since

the only genetic “repair mechanism” is the death of the organism carrying the defect, there is per-

petually an overhang of deaths not yet realised, stretching from the time of the initial mutation until

all descendants have died from the effect of the allele. The more harmful a mutation (measured in

reproductive success), the more rapidly appearances

Under the (admittedly näıve) assumption that there is a large class of potential mutations all

recurring at identical rates, the prevalence of a given mutant allele in the population will be expected

to track inversely the selective cost to individuals who carry that allele. The overall phenotypic impact

of these accumulated mutant alleles will then reflect the disjunction between the impact we measure

and the impact registered by natural selection. The application to senescence is immediate: If mutant

alleles impose equivalent mortality cost, the one whose mortality tends to come earlier in life will

be more costly from the perspective of natural selection. Carrying an allele that makes you prone

to childhood leukaemia reduces your expected number of offspring more than would an increased

susceptibility to Alzheimer’s disease or lung cancer. There is little selective cost to being prone to a

disease long after you have completed raising your children to adulthood, and quite likely have died
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of some other cause. The cumulative effect on the age-pattern of morbidity and mortality should be

broadly like what we observe: Increasing risk for all manner of ailments with increasing age, and a

progressive failure of repair processes.

It has not been obvious how best to turn Medawar’s conceptual model into something quanti-

tative. An early quantitative model for mutation and selection is the well-known work of M. Kimura

and T. Maruyama [6]. Our demographic formulations grow out of the work of Brian Charlesworth [2],

[3]. This work has focused, for mainly technical reasons, on settings which are highly stylised in the

following respects:

• The mortality impacts of a mutant allele is either focused on a single age, or on a simple range

around a focal age.

• The mutations are uniformly distributed.

• The selective costs of distinct mutant alleles act additively.

• The mortality effects of distinct mutant alleles act additively.

The last two conditions are a crude mathematical version of the biological condition of non-

epistasis, or non-interaction between the effects of different mutations. It is important to notice that

there is a contradiction between these two conditions: As discussed in [9] and [4], the most plausible

formula for the selective cost of carrying a collection of mutant alleles g is the change in the net

reproductive ratio (NRR):

(1) S(g) :=

∫
fx lx(0)dx−

∫
fx lx(g)dx

The integrals are all taken over ages for which the integrands are non-zero. The function lx(g), the

probability of survival to age x for members with genotype g, is derived from hazards that include

increments from mutations in g. If g is comprised of components that increase mortality additively, the

selective costs will clearly not be additive. This reflects the intuitive argument of Medawar: A mutant

allele that kills an individual at age 90 becomes less selectively costly in the presence of another allele

that might kill him at age 80.

More generally, since the disjunction between selection impacts and observable phenotypic effects

on mortality is the crux of the Medawar theory, we should not wish to constrain the model in exactly

this respect for the sake of mere mathematical convenience.

2 Informal description of the model

We repeat here the general description of the model that may be found in greater detail in [4].

The model has four fundamental ingredients:

• a complete, separable metric space M of loci;

• a finite Borel measure ν on M called the mutation measure because it describes the rate at

which mutations occur in regions of the genome;

• the space G of integer–valued finite Borel measures on M

• the selective cost function S : G → R+.

M is the collection of loci in the portion of the genome that is of interest to us. There is

a distinguished reference wild type genotype, and each locus represents a “position” at which the
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genotype of an individual may differ from that of the wild genotype. We allow the set M to be

quite general and do not necessarily think of it as a finite collection of physical DNA base positions

or a finite collection of genes. For example, the proposed explanation for the Gompertz mortality

curve and mortality plateaus at extreme ages in Charlesworth [3] suggest taking M to be a class of

functions from R+ to R+: the value of such a function at age x ≥ 0 represents an additional increment

to mortality at age x conferred by a mutation away from the wild type at this locus.

An element of G represents a “genotype”, regarded as the set of loci at which there have been

ancestral mutations away from the reference wild type. The null measure represents the wild genotype.

The state of the population at time t ≥ 0 in our model is a probability measure Pt on G. In the

version with recombination this distribution will be a Poisson random measure, which is determined

by its intensity measure, in general a locally-finite Borel measure onM and which is a finite measure

when the mutation measure ν has finite total mass. For most results, we do assume that ν has finite

total mass.

We specify the fitnesses of different genotypes by a selective cost function S : G → R+. The

difference S(g′)−S(g′′) for g′, g′′ ∈ G is the difference in the rate of sub-population growth between the

sub-population of individuals with genotype g′′ and the sub-population of individuals with genotype

g′. We make the normalizing assumption S(0) = 0 and suppose that

(2) S(g + h) ≥ S(h), g, h ∈ G,

in line with our assumption above that genotypes with more accumulated mutations are less fit.

The genotype of an individual is specified by the set of loci at which there has been a mutation

somewhere along the ancestral lineage leading to that individual. More precisely, a genotype is an

element of the space G of integer–valued finite Borel measures on M. An element of G is a finite

sum
∑

i δmi , where δm is the unit point mass at the locus m ∈ M. The measure
∑

i δmi corresponds

to a genotype that has ancestral mutations at loci m1,m2, . . .. The wild type genotype is thus the

null measure. We do not require that the loci mi ∈ M be distinct. We thus allow several copies

of a mutation. This is reasonable, since we are not identifying mutations with changes in nucleotide

sequences in a one-to-one manner.

For example, ifM = {1, 2, . . . , N} for some positive integer N , then G is essentially the Cartesian

product NN of N copies of the nonnegative integers: A genotype is of the form
∑N

j=1 njδj , indicating

that an ancestral mutation is present nj times at locus j, and we identify such a genotype with the

nonnegative integer vector (n1, n2, . . . , nN ).

Since the population is infinite, and all that matters about an individual is the individual’s geno-

type, the dynamics of the population are described by the proportions of individuals with genotypes

that belong to the various subsets of G. We are thus led to consider a family of probability measures

Pt, t ≥ 0, on G, where Pt(G) for some subset G ⊆ G represents the proportion of individuals in the

population at time t that have genotypes belonging to G. Note that Pt(G) also may be thought of as

the probability that an individual chosen uniformly at random from the population will have genotype

belonging to the set G. In other words, Pt is the distribution of a random finite integer-valued measure

onM. For example, ifM = {1, 2, . . . , N} and we identify G with the Cartesian product NN as above,

then Pt({(n1, n2, . . . , nN )}) represents the probability that an individual chosen uniformly at random

from the population will have nj ancestral mutations at locus j for j = 1, 2, . . . , N .

The evolutionary process Pt may be motivated as the limit of a discrete-time process in the space

of probability measures on G, progressing in time intervals 1/n (where n is a scaling constant which will

be taken to∞ in the limit) by iterating some combination of Mutation, Selection, and Recombination.

Starting from a probability distribution Q on G, a single step of these transformations works as follows:

Mutation A randomly chosen genotype from Q is added to a randomly chosen element from the mutation

distribution, which is a Poisson random measure with intensity ν/n.
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Selection Q is reweighted in proportion to the weight function e−S(g)/n.

Recombination A random subset A ⊂M is chosen, according to a probability measure R on B(M) (the Borel

sets on M), and two independent random “parents” are selected. The offspring receives the A

portion of one parent’s genotype, and the A{ portion of the other parent’s genotype. That is, g

and g′ are selected independently from Q. The offspring genotype is then gA + g′
A{ .

3 Main results

3.1 Mutation and selection

If there is mutation and selection, but no recombination, then the limiting evolution equation for Pt
is

(3)
d

dt
PtΦ = Pt

(∫
M

[Φ(·+ δm)− Φ(·)] ν(dm)

)
− Pt(Φ · [S − PtS]).

This is the model introduced and analyzed at length in [8] using the Feynman-Kac formula. When

M = {1, 2, . . . , N}, (3) is a special case of the classical system of ordinary differential equations for

mutation and selection in continuous-time – see Section III.1.2 of [1] for the derivation of an analytic

solution that agrees with the one that arises from a Feynman-Kac analysis.

Two principal results from [8] are the following:

Theorem 3.1 Let Π̃ be the Poisson random measure onM×R+ with intensity measure ν⊗Lebesgue,

and Zt :=
∫
M×[0,t] δm dΠ̃((m,u)). Suppose that there is a positive T such that exp

(
−
∫ t
0 S(Zu)du

)
S(Zt)

has finite expectation for all t ∈ [0, T ). Then Equation (3) has a solution on [0, T ), given by

(4) PtΦ =
E
[
exp

(
−
∫ t
0 S(Zu) du

)
Φ(Zt)

]
E
[
exp

(
−
∫ t
0 S(Zu) du

)] .

We order the points put down by Π̃ in order of their arrival times τ(1), τ(2), . . . and (solely in

the context of this section) write Yn := Zτ(n).

Theorem 3.2 Suppose ν(M) < ∞ and P0 puts unit mass at the null state 0, with S(0) = 0. Then

the solution (4) may be written as PtΦ = P̃tΦ/P̃t1, with Jn = 1g(M)=n, the indicator function of the

set with g(M) = n:

(5) P̃tJnΦ = ν(M)ne−ν(M)tE
[
(S(Y1) . . . S(Yn))−1Ht,nΦ(Yn)

]
.

Here Ht,n is a conditional probability defined in terms of independent unit-rate exponential variables

Z1, Z2, . . . by the formula

(6) Ht,n = P
{∑

Zj/S(Yj) < t |Y1, . . . Yn
}

If
∑
ν(M)nE[((S(Y1) . . . S(Yn))−1] is finite, Pt converges in distribution as t goes to infinity. If

the sum is infinite, PtJn goes to zero for all n.

Notice that a finite-population model without recombination along the same lines would be

vulnerable to Mueller’s ratchet, the process in which the fittest classes of genotypes in an asexual

population can be successively lost through drift, carrying the population to extinction. A thorough

discussion of the ratchet and the associated advantages of sex and recombination with references is

found in [1], pages 303–308. In the face of Mueller’s ratchet, a finite-population version of the model in

[8] would not be viable. This observation underscores the importance of incorporating recombination,

which avoids the ratchet by allowing fittest classes to be reconstituted in every generation.
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3.2 Adding recombination

If P0 is the distribution of a Poisson random measure, then mutation preserves this property. On the

other hand, epistatic selection drives the population distribution away from Poisson, while increasing

rates of recombination push it towards Poisson. Thus, when all three processes operate and we

consider a limiting regime where recombination acts on a much faster time scale than selection and

recombination, we expect asymptotically that if the initial condition P0 is the distribution of a Poisson

random measure onM, then Pt will also be the distribution of a Poisson random measure for all t > 0.

Of course, in order that recombination eventually will poissonise any initial distribution, the

segregating sets A must be sufficiently generic. More specifically, it must be the case that there is

a positive probability that the segregating set and its complement will both intersect a generic non-

null set in sets that each have positive mass. The following condition (with λ = µP ) will be key

to establishing establishing quantitative bounds on the rate with which recombination applied to the

distribution P converges to ΠµP :

Given a (symmetric) recombination measure R and a finite measure λ on M, we say that the

pair (R, λ) is shattering if there is a positive constant α such that for any Borel set A,

(7)

λ(A)3 ≤ α
[
λ(A)2 − 2

∫
λ(A ∩R)2 dR(R)

]
= 2α

∫
λ(A ∩R)λ(A ∩Rc) dR(R)

Supposing this is true, we may think of Pt as a process ρt of Poisson intensities, which are finite

measures on the space M of loci. We write Xπ for a Poisson random measure on M with intensity

measure π. We expect then that ρt should satisfy the evolution equation

(8) ρt(dm) = ρ0(dm) + t ν(dm)−
∫ t

0
E [S(Xρs + δm)− S(Xρs)] ρs(dm) ds.

We define the rigorous counterpart of (8) in [4], and establish the existence and uniqueness of

solutions.

Theorem 3.3 Fix a mutation measure ν ∈ H+, the nonnegative subset of the Banach space of finite

signed Borel measures onM equipped with the norm Wasserstein norm. Let S : G → R+ be a selective

cost function that satisfies the conditions

• S(0) = 0,

• S(g) ≤ S(g + h) for all g, h ∈ G,

• for some constant K,
∣∣S(g)− S(h)

∣∣ ≤ K∥∥g − h∥∥
Was

, for all g, h ∈ G.

Then equation (8) has a unique solution for any ρ0 ∈ H+.

Furthermore, we show there that our dynamical equation is a limit of a sequence of standard dis-

crete generation, mutation-selection-recombination models. We define Qk to be the result of applying

k rounds of mutation, selection, and recombination to an initial distribution Q0 on G.

Theorem 3.4 Let (ρt)t≥0 be the measure-valued dynamical system of (8) whose existence is guaran-

teed by Theorem 3.3. Suppose that the selective cost function S satisfies the hypotheses of Theorem 3.3,

and in addition that the pairs (R, ν) and (R, ρ0) consisting of the recombination measure and the mu-

tation measure are shattering, and the initial measure Q0 is equivalent to its Poissonization P0 := Πρ0,

with log dQ0/dP0 being Lipschitz.
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Then, for any T > ε > 0, letting Πρ be the Poisson random measure with intensity ρ,

lim
n→∞

sup
ε≤t≤T

∥∥Πρt −Qbtnc
∥∥
Was

= 0.

If, in addition, the initial measure Q0 = P0 is Poisson, then this equation holds for ε = 0.

4 Haldane’s Principle

Given that it involves computing an expected value for a quite general Poisson process, equation (8)

may look rather forbidding. However, for certain reasonable choices of selective costs the integral can

be evaluated explicitly, leading to a simpler and more intuitive system. Some such examples may be

found in [4], [9], and [10].

There are also interesting general conclusions that may be drawn. We mention here just one,

reproducing in brief a more lengthy discussion in [9].

Working with genetic models without age structure, [5], page 341, announced that “... the loss

of fitness to the species depends entirely on the mutation rate and not at all on the effect of the gene

upon fitness of the individual carrying it ...” He found the sum total of mutation rates at different

sites to be approximately equal to the resulting decrement in the logarithm of fitness, a measure of

“genetic load” essentially equivalent to our selective cost.

Can this principle be generalised to the setting of age-specific mortality effects? The simplest

version of our model which might be relevant would have mutations imposing point-mass increments

to mortality at fixed ages, with the effect at age a tuned by a parameter η(a). It is shown that if

an equilibrium exists, the aggregate population hazard maintained by mutation-selection balance at

equilibrium does not depend on the sizes η(a) of the mutational effects. The aggregate population

hazard, we note, is lower at advanced ages than the expected hazard, since the aggregate hazard for

the population at age x averages only those individuals who have actually survived to age x. Survivors

to advanced age carry, on average, lower mutational loads than a typical member of the population.

This result generalises a property of linear approximate models, but in a surprising direction.

Scaling up the size of the effect of a mutation increases the selective pressure against it and reduces its

expected frequency. In the linear setting, the expected hazard, that is, the average hazard averaged

across the population, is insensitive to η(a). Doubling η(a) halves the expected frequency ρ(a) and

leaves the expected hazard η(a)ρ(a) unchanged. In our full non-linear setting, it is not the expected

hazard but the aggregate population hazard that comes out to be invariant to changes in η(a).
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