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Abstract

Latent Gaussian models are an extremely popular, flexible class of models. Bayesian inference
for these models is, however, tricky and time consuming. Recently, Rue, Martino and Chopin
introduced the Integrated Nested Laplace Approximation (INLA) method for deterministic fast
approximate inference. In this talk we will outline the INLA approximation and its related R
package. We will focus on using INLA for survival and point process models and demonstrate
some of the new features. Finally we will discuss possible extensions for INLA.

1 Introduction

As the statistical understanding of applied scientists increases and new techniques deliver larger, more
complicated data sets, applied statisticians are faced with increasingly complex models. Naturally, as
the complexity of these models increase, it becomes harder and harder to perform inference. Appro-
priately, a great deal of effort has been expended on constructing numerical methods for performing
approximate Bayesian inference. Undoubtably, the most popular family of approximate inference
methods in Bayesian statistics is the class of Markov Chain Monte Carlo (MCMC) methods. These
methods, which exploded into popularity in the mid 1980s and have remained at the forefront of
Bayesian statistics ever since, with the basic framework being extended to cope with increasingly
more complex problems.

The key advantage of MCMC methods is that, in their most vanilla incarnation, they are ex-
tremely simple to program. This simplicity, together with their incredible flexibility, has lead to the
proliferation of these methods. Of course, there are problems: a single site auxiliary Gibbs sampler
for spatial logistic regression is known to fail spectacularly. This is just the tip of the iceberg—for
even mildly complicated models, it can be extremely difficult to construct a MCMC scheme that
converges in a reasonable amount of time.

For large models, and especially spatial models, fast convergence isn’t enough. Even if you could
sample exactly from the posterior, sampling–based methods converge like O(N−1/2), where N is
the number of samples, which suggests that you need 102p samples to get an error of around 10−p.
Clearly, if computing a single sample is even reasonably expensive, this cost will be prohibitive. In
the best case, this means that MCMC schemes for large problems typically take hours or even days
to deliver estimates that are only correct to three or four decimal places. Clearly this is less than
ideal!

The only way around this efficiency problem is to consider alternatives to sampling-based methods.
The first step in constructing an efficient approximate inference scheme is to greatly restrict the class
of models that we will consider: it is näıve to expect that an efficient algorithm exists that will solve
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all of the problems that MCMC treats. With this in mind, we restrict our attention to the class of
latent Gaussian models, which we define in three stages as

yi|x ∼ π(yi|xi) (Observation equation)

x|θ ∼ N(µ(θ),Q(θ)−1) (Latent Gaussian field)

θ ∼ π(θ) (Parameter model),

where Q(θ) is the precision matrix (that is, the inverse of the covariance matrix) of the Gaussian
random vector x. In the interest of having a computable model, we will restrict Q to be either sparse
or small enough that computing multiple factorisations is not an issue. These models cover a large
chunk of classical statistical models, including dynamic linear models, stochastic volatility models,
generalised linear (mixed) models, generalised additive (mixed) models, spline smoothing models,
disease mapping, log-Gaussian Cox processes, model-based geostatistics, spatio-temporal models and
survival analysis.

The Integrated Nested Laplace Approximation (INLA), builds upon the use of Laplace approx-
imations, which were originally for approximating posterior distributions by Tierney and Kadane
(1986). The first step in the INLA approximation is to perform a Laplace approximation to the joint
posterior

π(θ|y) =
π(θ)π(x,θ)π(y|x)

π(x|θ,y)

∝ π(θ)π(x,θ)π(y|x)

πG(x|θ,y)
, (1)

where πG(x|θ,y) is the Gaussian approximation to π(x|θ,y) that matches the true distribution at
the mode (Rue et al., 2009). The approximate posterior marginals for the non-Gaussian parameters
can then be constructed through numerical integration as long as the dimension of θ is not too
large. The posterior marginals for the latent field π(xi|y) are constructed by computing a Laplace
approximation to π(xi|θ,y) and then integrating out against the approximate joint posterior for θ|y.
Full details of the approximation scheme can be found in Rue et al. (2009).

2 The r-INLA program

The INLA method was designed to be provide fast inference for a large class of practical Bayesian
problems. In order to fulfil this aim, the r-INLA package was created as an R interface to the INLA
program, which is itself written in C. The syntax for the r-INLA package is based on the inbuilt glm
function in R, which highlights the effectiveness of the INLA method as a general solver for generalised
linear (mixed) models. The r-INLA package is available from http://r-inla.org.

They key to the computational efficiency of the r-INLA program is that it is based on GMRFLib,
a C library written by H̊avard Rue for performing efficient computations on Gaussian Markov ran-
dom fields. As such, r-INLA is particularly effective when the latent Gaussian field has the Markov
property. This covers the case of spline smoothing (in any dimension), as well as conditional au-
toregressive models and some Matérn random fields (Lindgren et al., 2011). Such a latent field is
specified through the formula mechanism in R.

To demonstrate the r-INLA package, let us consider some survival data for myeloid leukaemia
cases in the north-west of England. The model is a Cox proportional hazard model, where the hazard
depends linearly on the age and sex of the patient, smoothly on the white blood count (wbc) and an
econometric covariate (tpi). Furthermore, it is assumed that there is a spatially correlated random
effect, which takes into account which district the patient is in. The following code performs full
Bayesian inference on the appropriate generalised additive mixed model in around seven seconds.
The posterior mean spatial effect is shown in Figure 1
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Figure 1: The posterior mean for the effect of district.

> data(Leuk)

> g = system.file("demodata/Leuk.graph", package = "INLA")

> formula = inla.surv(Leuk$time, Leuk$cens) ~ 1 + age + sex + f(inla.group(wbc),

+ model = "rw1") + f(inla.group(tpi), model = "rw2") + f(district,

+ model = "besag", graph.file = g)

> result = inla(formula, family = "coxph", data = Leuk)

3 New features

Since the original INLA paper, there have been a number of new developments. In this section, we
outline some of the most recent additions to the r-INLA package.

Manipulating the likelihood The original INLA method was limited to observation models where
each observation depended on one element of the latent Gaussian field. While this is commonly the
case, this assumption is violated, for example, when the observed data consists of area averages of
the latent field. In this case,

yi|x ∼ π

yi∣∣∑
j

aijxj

 .

We further assume that the dependence of the data on the latent field is “local” in the sense that
most elements of the “A matrix” are zero. With this assumption, everything stays Markovian and
fast inference is still possible. This is implemented in the r-INLA program by modifying the con-

trol.compute parameter in the r-INLA function call:

> res = inla(formula, family = "...", data = ..., control.compute = list(A = amat))
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Beyond relaxing this restriction to the class of models considered by the r-INLA program, there
are a number of other new methods for building new models. The f() function, which r-INLA uses
to specify random effects, has two new options: replicate and copy. The first option can be used
to simply deal with the case where the likelihood requires independent replicates of the model with
the same hyperparameters. The copy option is useful in situations where the latent field uses the
same random field multiple times, possibly with different scalings.

Finally, r-INLA has been extended to include models where the data comes from different sources.
In this case, different subsets of the data will require different likelihood functions. This can be
programmed in r-INLA by re-writing the data as a matrix where the number of columns are equal
to the number of likelihoods. In the case where there are two likelihoods, each containing n data
points, this is achieved through the command

> Y = matrix(NA, N, 2)

> Y[1:n, 1] = y[1:n]

> Y[1:n + n, 2] = y[(n + 1):(2 * n)]

The r-INLA command is then modified appropriately by setting family = c("model1", "model2").

Survival models A class of models that were not considered in the original INLA paper were
Bayesian survival models. The trick is to see Bayesian survival models as just another set of Latent
Gaussian models. In some situations, this is straightforward, while at other times it requires data
augmentation tricks, which are implemented in the inla.surv() function, demonstrated in Section
2. These methods are outlined in (Akerkar et al., 2010; Martino et al., 2010), which also discuss ways
to deal with different types of censoring.

Stochastic partial differential equations A new method for constructing computationally effi-
cient Gaussian random fields by taking advantage of the spatial Markov property was presented in
a recent read paper by Lindgren et al. (2011). The idea is to use the fact that these fields can be
represented as the solution to stochastic partial differential equations (SPDEs) to construct computa-
tionally efficient approximations to them. Beyond building computationally efficient approximations
to standard spatial models, this method also allows for the construction of new classes of random
fields with physically interpretable non-stationary. These models have been implemented in r-INLA

. The following chunk of code fits a Bayesian spline through some noisy data points.
It begins by constructing a mesh on the unit square with vertices at the observation locations

(points)

> bnd = inla.mesh.segment(matrix(c(0, 0, 1, 0, 1, 1, 0, 1), ncol = 2,

+ byrow = TRUE))

> mesh = inla.mesh.create(points, boundary = bnd, refine = list(max.edge = 0.1))

The second step is to construct the SPDE model

> spde = inla.spde.create(mesh, model = "imatern")

where imatern is the intrinsic matern model with ν = 1, i.e. the spline smoothing model. Finally
the formula is constructed and the inference is performed in the standard way:

> formula = y ~ f(data_points, model = spde) - 1

> r = inla(formula, family = "gaussian", data = list(y = y, data_points = mesh$idx$loc))

4 What the future holds

There are an almost endless number of ways that the INLA method r-INLA program can be extended.
In this section we describe some of the new features that we are currently working on.
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Figure 2: The precision for the latent Gaussian field is badly overestimated—the true value is φ = 1.

Fixing “failures”: global Gaussian approximations The Laplace approximation proceeds by
fitting a Gaussian approximation around the mode of π(x|θ,y), however there are situations in which
this is not the most appropriate approximation. For instance, if the true distribution is bimodal, a
better ‘fit’ would be obtained by constructing a Gaussian approximation that globally approximates
the distribution.

Another situation where these more global approximation would be of use is the following case
of “failure”. Consider the problem of approximating the latent random field for the following logistic
regression model.

> n = 100

> eta = 1 + rnorm(n)

> p = exp(eta)/(1 + exp(eta))

> y = rbinom(n, size = 1, prob = p)

> bad.result = inla(y ~ 1 + f(num, model = "iid"), family = "binomial",

+ Ntrials = rep(1, n), data = list(y = y, num = c(1:100)))

Figure 2 shows the posterior for the precision of the random effect. INLA has clearly missed the
correct precision, which was 1.

So what went wrong? Quite simply there is very little information in the data and hence the
model is very prior sensitive. This sensitivity, combined with the vague prior that r-INLA uses as a
default produced the nonsense results in Figure 2.

Kronecker product models In a number of applications, the precision matrix in the Gaussian
random field can be written as a Kronecker product of two standard covariance matrices. A simple
example of this is the separable space-time model constructed by using spatially correlated innovations
in an AR(1) model:

xt+1 = φxt + εt,

5

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS044) p.812



where φ is a scalar and ε ∼ N(0,Qε
−1). In this case, the precision matrix is Q = QAR(1)⊗Qε, where

⊗ is the Kronecker product.
Due to the prevalence of Kronecker product models, it is desirable to add a Kronecker product

mechanism to r-INLA . The general Kronecker product mechanism is currently in progress, but a
number of special cases are already available in the code through the undocumented group feature.
For example, a separable spatiotemporal SPDE model can be constructed using the command

> frm = y ~ f(loc, model = spde, group = time, control.group = list(model = "ar1"))

in which every observation y is assigned a location loc and a time time. At each time, the spatial
points are linked by an SPDE model, while across the time periods, they evolve according to an
AR(1) process.

Extending the SPDE methodology The grouping mechanism described above can be used to
produce separable space-time models, that is models in which the covariance function can be factored
into a purely spatial and a purely temporal component. In some situations, this type of separability
is an unrealistic assumption and a great deal of research has gone into constructing classes of non-
separable spatiotemporal covariance functions. An interesting property of SPDE models is that any
model built with a sensible space-time partial differential operator will lead to a non-separable model.
Furthermore, these models will inherit the good physical properties of the deterministic PDE models,
such as causality and non-reversibility. This guarantees that the non-separability is useful, rather
than simply present.

We are currently working to include the stochastic heat equation model

∂

∂t
(τ(s, t)x(s, t))−∇ · (D(s, t)∇(τ(s, t)x(s, t))) +∇ · (b(s, t)x(s, t)) + κ2(s, t)x(s, t) = W (s, t),

where the noise process W (s, t) is white in time, but correlated and Markovian in space. The challenge
here is not simply placing the model into the r-INLA framework. This model includes temporally
varying anisotropy and temporally varying drift, and therefore, even parameterising this model is an
open problem.

Gamma frailty models: relaxing the Gaussian assumptions The assumption of Gaussian
random effects is at the very heart of the INLA approximation. However, there are a number of
situations in which this is not a realistic assumption. An example of this comes when incorporating
frailty into Cox proportional hazard models. In these models, the hazard function for individual i is
modelled as

h(ti) = h0νi exp(ηi),

where ηi is a linear model containing covariates and νi is the frailty term, which models unobserved
heterogeneity in the population. Clearly, if we take νi to be log-normal, the resulting model fits firmly
in the standard INLA framework. Unfortunately, log-normal frailties are an uncommon model,
typically the frailty term is taken to be gamma distributed. The question is, therefore, can we
incorporate gamma frailty models into the INLA framework.

The solution to this problem comes in the guise of “importance sampling”–type decomposition:

Gamma = LogNormal︸ ︷︷ ︸
“Prior”

× Gamma

LogNormal︸ ︷︷ ︸
“Correction”

.

With this type of formulation, it is possible to include gamma frailty models into the INLA framework.
This approach is not entirely satisfactory—although we can theoretically do this for any model

suitably close to the log-normal (such as the log-t distribution), it is not particularly flexible. The aim
of this work is to incorporate ideas from Bayesian nonparametrics to construct a class of suitable non-
Gaussian random effects models that can be incorporated into this framework. This will massively
increase the class of models for which INLA is available.
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5 Conclusion

This article was finished on 15th May, 2011 and all of the information about INLA is correct at this
time. This statement is necessary—INLA is still a project in active development. By the time you
read this, some of the ‘present’ features will have moved into the ‘past’, and the ‘future’ features will
be edging ever closer to inclusion. In fact, those who are interested can follow the progress of the
INLA project at http://inla.googlecode.com, or by frequently updating the ‘testing’ version of
INLA using the command

> inla.update(testing=TRUE)

This ‘testing’ version of INLA updates frequently and includes experimental interfaces to the newest
features. This build also has the pleasant feature of matching with the documentation on http://r-inla.org!

The r-INLA project was created to provide an easy to use tool for performing Bayesian inference
on latent Gaussian models. As such, the set of problems that r-INLA can solve is limited to those
that someone has wanted to solve. There are any number of possible extensions not listed in the
‘future’ section that we are not currently considering because no one has asked for them yet. The
lesson here is if you want r-INLA to have a particular feature, observation model or prior model, you
need to ask us! The development of the INLA project is driven entirely by the research interests of
the development team and the requests that we receive from the user community.
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