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Introduction

Dimensionality reduction is an important step in being able to process and understand large,
high-dimensional data. With data acquisition and storage capabilities skyrocketing, the ability to
quickly and precisely extract meaningful structure while discarding extraneous information is often
imperative before any type of inference can be made from the data. In this paper, we introduce
a novel method for automatically extracting a low-dimensional representation of complicated, often
non-linear structure from high-dimensional datasets of varying local density. Self-tuning diffusion
maps extend the previous literature on diffusion maps, a dimensionality reduction tool, to adapt to
fluctuating local densities in the data. This improvement allows for better detection of structure in the
presence of significant density variations, irregular sampling, or possible hierarchical structure. We
demonstrate the power of this method with several example datasets that are difficult to analyze using
standard diffusion maps and show that the self-tuning diffusion map is better able to disentangle the
complicated structure. Once we have calculated the STDM, standard methods can be used to make
accurate inferences in the reduced space.

In the next section, we first review diffusion maps and their subsequent dimensionality reduction
of the data and then introduce the difficulty of choosing good tuning parameters. We then introduce
the self-tuning diffusion map and possible parameter choices while providing some insights on its
advantages. We next demonstrate the method using examples from clustering, classification, and
regression and a cross-validation algorithm is suggested for choosing the self-tuning parameters in
supervised learning problems. We conclude with a summary of the advantages of the self-tuning
diffusion map and directions for future work.

Diffusion Maps

In this section we provide a brief overview of diffusion maps, which have been successfully used
for tasks such as data parameterization (e.g. [1]), regression (e.g. [2]), and high-dimensional density
estimation (e.g. [3]). Diffusion maps aim to measure the “connectivity” of a dataset and project
data into diffusion space, in which the Euclidean distance between two observations is small if the
observations are highly connected in the original feature space and large otherwise. Assume we have n
observations each with p attributes. We define a weighted graph on the data where each observation
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is a node and the edge between two observations x and y is defined as

w(x, y) = exp(−d(x, y)2/ε)(1)

where d(x, y) is the application-dependent dissimilarity between x and y, often just Euclidean distance.
Next, we construct a fictive Markov random walk ([4]) over the weighted graph where the transition
probability of going from x to y in one-step is p1(x, y) = w(x, y)/

∑
z w(x, z). From this, we then

construct the transition matrix P where Pij = p1(i, j). The transition probabilities will be close
to zero unless the two observations are similar. This transition matrix construction is also used in
several spectral clustering algorithms. While there is a strong connection between spectral clustering
and diffusion maps ([5],[6]), diffusion maps can be used for a wide variety of applications and are more
flexible in the choice of dimensionality (more details later). The tuning parameter ε controls how
quickly w(x, y) decays to zero and needs to be selected either automatically (e.g. cross-validation) or
by the user. A proposed default ([7]) is to take the median distance to the Kth nearest neighbor in
the dataset, i.e.,

ε(K) = median(d(x, xK))(2)

where K is a small fraction of n, usually around 1%. For notational brevity, we will often simply refer
to this as ε. The parameter ε could also be determined by some other measure or optimized over a
grid of possible values.

Since P is the transition matrix for a Markov random walk, it is straightforward to calculate
the transition probability after t steps using entries from the matrix P t. We can also calculate the
stationary distribution of the random walk, denoted φ0(.). We use these quantities to define the
diffusion distance between two observations at the scale t:

D2
t (x, y) =

∑
z

(pt(x, z)− pt(y, z))2

φ0(z)
(3)

This distance calls two observations close if their t-step conditional distributions are close. The
diffusion map at scale t projects the data into m-dimensional diffusion space such that the Euclidean
distance between two observations in diffusion space approximates their diffusion distance in the
original coordinate system. The mapping is defined as follows:

Ψt : x→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)](4)

with λj and ψj the eigenvalues and right eigenvectors respectively of P . In this paper we use the
multi-scale diffusion map as defined in [8]. The multi-scale diffusion map simultaneously considers
all possible paths between observations across all time scales t making it more robust to structure at
different time scales. To do this, we replace λt

j with
∑∞

t=1 λ
t
j = λj/(1 − λj) which we call the jth

eigenmultiplier. Additionally, the use of the multi-scale diffusion map eliminates having to choose
t. In practice, we still need to choose m, the number of diffusion dimensions (with an upper bound
of n). Where appropriate, m is chosen using cross-validation or some other measure of risk. In the
absence of such a measure, m can be chosen by examining the drop-off in the eigenmultipliers, similar
to choosing the number of principal components based on a scree plot. As with principal components,
we seek the smallest m that accurately captures the structure of the data. However, diffusion maps
are often better able to capture non-linear and complex structure in a way that principal components
cannot. For more details on diffusion maps, see [1] and [9].
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Self-tuning Diffusion Maps

The global tuning parameter ε represents the size of the neighborhood in which two observations
are considered similar. A small value of ε corresponds to a large similarity neighborhood; increasing
ε shrinks the neighborhood and decreases the number of pairs of similar observations. This global
parameter can be problematic if the structure in the data is dependent on different local densities. For
example, in Figure 1, we see four dense regions of observations embedded in a sparser background. The
largest distance between two observations in a dense area may be smaller than the distance between
an observation in the background and its nearest neighbor. Here it would be difficult to capture the
structure of the data using a global ε to define a similarity neighborhood irregardless of the region’s
local density.

Figure 1: Four very dense groups embedded in a noisy background. Differences in local densities may
cause difficulty in capturing the structure using standard diffusion map techniques.

We previously commented on the connections between spectral clustering and diffusion maps;
a variant of spectral clustering called self-tuning spectral clustering (STSC, [10]) incorporates local
scaling parameters in order to capture group structure with different densities. In STSC, w(x, y) =
exp(−d(x, y)2/ε) is replaced with w(x, y) = exp(−d(x, y)2/εxεy) where εx and εy represent measures
of the local density of observations x and y respectively. In [10], the authors suggest using

εx(K) = d(x, xK)(5)

where xK is the Kth nearest neighbor of x (with K = 7 as a default). Again, we will often just
refer to εx. The self-tuning approach adjusts to the local density; in dense regions, two observations
have to be closer to be considered similar than if they were in a sparse area. For instance, in Figure
1, observations in the dense regions would be assigned smaller εx values than those in the sparse
background. This approach has been successful in spectral clustering and has been proposed for
possible use with diffusion maps as well ([11]). In this paper, we explore the self-tuning diffusion map
framework (not exclusive to clustering) and comment on possible advantages and disadvantages.

We extend the self-tuning framework to diffusion maps by incorporating the local scale param-
eters into the dissimilarity matrix. Let

d′(x, y) = d(x, y)/
√
εxεy.(6)
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Then

w′(x, y) = exp(−d′(x, y)2/1) = exp(−d(x, y)2/εxεy).(7)

Using d′(x, y) as our dissimilarity measure and setting the global ε = 1 constructs a self-tuning
diffusion map (STDM). The STDM eliminates the global ε but still leaves the problem of choosing
m. Additionally, we need to choose K to calculate εx(K) ∀ x, the local scaling parameters for
all observations. While [10] suggest the form in Equation (5) and setting K = 7, we believe this
choice will not scale well for datasets of different sizes (among other possible disadvantages). As an
alternative, one could choose K to be a small percentage of n (the approach used to select a default
ε in the DiffusionMap package in R; [7]). This εx may be more robust since it will scale with the size
of the dataset. In certain applications, it might be desirable to optimize εx over some measure of risk;
we explore this option in subsequent examples. We could also use a completely different measure of
local density, for example, a kernel density estimate.

After specifying the form of εx, we proceed as before, first creating the transition matrix P where
p1(x, y) = w′(x, y)/

∑
z w
′(x, z) and then constructing the self-tuning (multi-scale) diffusion map from

the eigenvalues and eigenvectors of P . The self-tuning diffusion distance is then defined as in Equation
(3) using the dissimilarity metric from Equation (6). The Euclidean distances between the self-tuning
diffusion map coordinates will approximate the self-tuning diffusion distance between the observations
in the original coordinate system.

Examples

Although motivated by the use of self-tuning parameters in spectral clustering, this paper ex-
plores the performance of STDM in a more general framework. We include applications in clustering,
classification, and regression. For easy visualization, we present several two-dimensional examples
with nonlinear structure and varying local density. We also include a higher dimensional classification
problem, the identification of glass fragments via their composition. In all examples, we compare
the performance of the self-tuning diffusion map against the standard use of diffusion maps (DM).
Euclidean distance is used for d(x, y).

Clustering

We return to the Figure 1 dataset, originally found in [10]. This type of structure can cause
problems for standard clustering methods because of both non-standard cluster shapes and fluctua-
tions in local density. We first compute a standard diffusion map using slightly altered defaults (to
ensure graph connectedness) in the DiffusionMap package in R ([7]). Using the 95% dropoff in eigen-
multipliers, we choose m = 7. We then cluster the observations’ diffusion coordinates with k-means
(using the correct number of clusters). K-means is a common clustering algorithm that partitions the
observations into roughly spherical groups ([12]); k-means has been suggested by [1] as the appropri-
ate clustering technique for use with diffusion coordinates because it minimizes distortion (in a lossy
compression framework) in the embedded space. Next we calculate the self-tuning diffusion map using
εx as defined in Equation (5) with K = 7 and m = 5. The self-tuning diffusion coordinates are then
also clustered using k-means (again with the correct k).

Figure 2 compares both the projected diffusion coordinates and the final cluster assignment
of standard diffusion maps (top row) and self-tuning diffusion maps (bottom row). The fluctuating
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Figure 2: All subfigures colored by cluster assignment: a) DM coordinates; b) DM assignment of
original observations; c) STDM coordinates; d) STDM assignment of original observations.

local density causes the standard DM to essentially partition the feature space into sections. Two of
the dense regions are grouped; two corners of the background noise are labeled clusters (likely due
to slightly larger random separation from the remaining background observations). In contrast, the
STDM separates the five groups very well in the projected space (excepting perhaps the background
observations and the upper right blue cluster). The final cluster assignments correctly match the
structure found in the data. We also reduced the number of diffusion dimensions from m = 7 to
m = 5. Additionally note the separation in the STDM coordinates is such that any standard clustering
method would likely recover the true structure; we are not restricted to k-means. In fact, we have
seen in practice that hierarchical linkage methods can often give superior performance ([13]).

Previous work ([13]) has shown several advantages to clustering in diffusion coordinates (both
standard and self-tuning). One benefit is the separation of the choice of the number of eigenvectors
m from the choice of the number of clusters k. Many spectral algorithms (for example, [14]) select
m to be equal to k, which itself is often unknown apriori. Often, this choice corresponds to a higher
dimensionality than necessary (resulting in a suboptimal dimensionality reduction). In extreme cases,
these extra dimensions can adversely affect the quality of the clustering solution. In contrast, using
STDMs, we choose the number of dimensions that most succinctly capture the important structure in
the data. This choice could be made heuristically (as done above); [13] proposes an automatic method
based on prediction strength ([15]). In addition, the resulting dimension reduction can make tasks like
choosing the number of clusters k easier via improved visualization and analysis of the reduced space.
Furthermore, since STDMs typically separate the clusters more clearly, clustering solutions tend to
be less dependent on the choice of algorithm. Often simple algorithms on an STDM are sufficient
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to capture the structure (when complicated procedures are necessary on the original coordinates).
Further exploration was done on other examples with varying local density from [10]. In all cases,
k-means on a DM was largely unable to recover the structure; using an STDM instead resulted in
perfect recovery.

In some sense, clustering is a difficult application for the STDM framework. STDMs requires
choosing tuning parameters which is not as straightforward when we cannot directly optimize a well-
agreed-upon criterion such as a cross-validation score. In addition to the tuning parameters, the user
still also needs to select the number of clusters k. Making this choice is outside the scope of this paper;
however, we believe the use of STDMs can make this choice easier.

Classification

Next we examine the use of STDMs in a classification setting where the presence of labeled
data allows for a more straightforward choice of optimal tuning parameters. One method for choosing
the local scaling parameters is cross-validation. We utilize the following algorithm for classifying
observations using STDMs.

1. For each K ∈ {1, . . .K∗}:

(a) Compute the STDMK using εx(K) = d(x, xK) and the m selected by the 95% dropoff in
eigenmultipliers.

(b) Partition the data randomly into R subsets.

(c) For r = 1, 2, ..., R,

i. Remove subset Sr from STDMK and train a classifier on the remaining observations.

ii. Predict the labels for Sr using the classifier from the previous step and compute the
misclassification rate Mr.

(d) Find the average misclassification rate over the subsets: M̄R(K) = 1
R

∑R
r=1Mr

2. Choose the K with the smallest M̄R(K) (and corresponding m value).

Alternatively, we could separate the choice of K and m by cross-validating over both parameters
(with a significant increase in computational cost). In addition, the algorithm could easily incorporate
other choices for εx.

To demonstrate this algorithm, we return to the example in Figure 1. The four dense region
sizes are 116, 111, 150, and 109; we have 136 background observations. We search over a grid of
nearest neighbor values for K from 1 to 80 and find that for any K from 3 to 22 (all corresponding
to m = 5), linear discriminant analysis on the STDM has a zero percent misclassification rate. This
large range of optimal K values is likely an artifact of the artificial dataset. We do note, however,
that using K = 1 (one-near-neighbor) does not work well, likely because it is too sensitive to outliers.
As K increases, εx increases, and we lose the ability to discern fluctuations in the local density.

We now compare performance of DM and STDM for a real-world high-dimensional classification
problem. The glass identification dataset ([16]) is comprised of 214 glass samples with nine attributes1

each, corresponding to the refractive index and the chemical contents of each sample. The dataset was
1Each attribute was standardized by subtracting the mean and dividing by the standard deviation.
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obtained from the UCI Machine Learning Repository [17]. There are seven different types of glass –
two types for building windows, two types for vehicle windows, containers, tableware and headlamps.
Being able to differentiate the types is important in practice; glass left at a crime scene can be used
as evidence if it can be properly identified. We compare classifying the DM and the STDM. In both
cases, cross-validation was used to select the optimal tuning parameter, respectively ε and K. The
number of eigenvectors m was selected using the 95% dropoff in eigenmultipliers. We again use linear
discriminant analysis as our classifier but any number of classification algorithms could be used (given
the clearer separation in the projected diffusion space).

2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

Epsilon

M
is

cl
as

si
fic

at
io

n 
R

at
e

0 20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

K

M
is

cl
as

si
fic

at
io

n 
R

at
e

Figure 3: Choosing tuning parameters via four-fold cross validation: a) DM’s misclassification rate as
a function of ε (global); b) STDM’s misclassification rate as a function of K (local).

Figure 3 shows the four-fold cross-validation results for both the DM (left) and the STDM
(right). The DM misclassification rate remains between 60% and 70% regardless of ε value; the
STDM misclassification rate is high for K = 1 (as expected), and then drops immediately, remaining
in the neighborhood of 30% as K increases. Using STDMs with the cross-validation selected local εx,
we achieve an error rate of 28%, far less than the 63% corresponding to the DM with cross-validation
selected ε. In this example, the STDM is better at differentiating between coarse differences in the
types of glass (e.g. building windows and car windows) but also the fine differences within types (e.g.
the two different types of building windows). In the classification framework, STDMs seem better
able to negotiate the (possibly hierarchical) structure in the data. Although cross-validation can be
used to select optimal tuning parameters, our results so far have indicated that performance may not
be strongly dependent on the exact choice of εx(K); it may be enough just to identify a range of
appropriate K values.

Regression

STDMs can also be used to transform predictor variables for regression problems. As in the
classification setting, the tuning parameter can be selected using cross-validation. To demonstrate, we
examine an irregularly sampled spiral embedded in two dimensions, seen in Figure 4. The response
variable is a noisy version of the spiral parameter which traces the path of the spiral. Clearly, a
simple linear regression will not be able to capture this structure. Again, we use cross-validation to
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choose tuning parameters (ε, K) over a grid for DMs and STDMs using the smallest mean-squared
error (MSE) as our criterion. The number of diffusion dimensions m was chosen using the 95%
eigenmultiplier dropoff (but could also be chosen by cross-validation at an additional computational
cost.)
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Figure 4: Spiral color represents the intensity of the response; local density varies with the response

Figure 5 shows the cross-validation results for the DM (left) and the STDM (right). For both,
the MSE initially drops substantially and then rises as ε,K respectively increase. After the initial
drop, it appears that the STDM almost always performs better than the DM regardless of K, ε values
(again indicating that it may not be necessary to identify an exact optimal tuning parameter). The
best STDM representation uses K = 6 for an MSE of 9.26 which is considerably lower than the best
DM MSE (12.50, ε = 0.0598). In contrast to the DM, the STDM adapts to the irregular sampling
and better traverses the spiral, adjusting to both the sparse and dense regions.

0.0 0.5 1.0 1.5

20
40

60
80

10
0

Epsilon

M
S

E

0 20 40 60 80 100

20
40

60
80

10
0

K

M
S

E

Figure 5: a) Cross-validation selects ε = .0598; DM MSE = 12.50 b) Cross-validation selects K = 6;
STDM MSE = 9.26
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Conclusion

In this paper we introduced the self-tuning diffusion map, a flexible variant of standard diffusion
maps, which we have shown to be an effective tool for simultaneously reducing the dimensionality
of complex datasets while preserving the intrinsic and often complicated structures within the data.
STDMs extend the established and successful diffusion map framework to account for local density
fluctuations and data structures which may occur at different scales. We demonstrate the power of
STDMs using examples from clustering, classification, and regression where standard diffusion maps
using a global tuning parameter cannot adapt to local differences in the data. By introducing a series
of local parameters, STDMs can more successfully navigate local variations to produce an accurate
low-dimensional representation of the underlying data structures. While our examples are limited to
clustering, classification and regression, STDMs can be applied to a wide variety of other applications
including, but not limited to, high-dimensional density estimation, data parameterization, and image
analysis.

We presented results that selected local tuning parameters based on nearest neighbor distances
and via cross-validation algorithms in supervised learning settings. We referenced other possible
methods for choosing these local parameters including borrowing tools from the adaptive density
estimation literature. Future work will explore the performance of different choices. In addition,
for unsupervised applications (e.g. clustering) where cross-validation may not be possible, further
investigation of appropriate methods to choose the tuning parameters is needed. Regardless, the
self-tuning diffusion map appears to potentially be a powerful, flexible addition to the diffusion map
framework.
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ABSTRACT

Diffusion maps are a powerful tool for identifying complicated structure and reducing dimen-
sionality in a wide variety of applications. Representing the connectivity of a data set, diffusion maps
project observations into a space in which standard methods can more easily model the structure.
These maps rely heavily on the choice of a global tuning parameter ε that dictates the threshold for
similarity. Often, however, using a global tuning parameter does not capture structure that may be a
function of fluctuations in the local density. For example, a dense region embedded in background noise
would be difficult to capture with standard diffusion maps. We present a flexible self-tuning diffusion
map framework that incorporates local tuning parameters to capture this type of structure (if present).
We illustrate the self-tuning diffusion framework using examples from clustering, classification, and
regression. Where appropriate, a cross-validation algorithm is employed to choose local tuning param-
eters. Use of the self-tuning diffusion map greatly improves the recovery of structure in the presence
of varying local density.
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