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Abstract

The problem of performing online inference when observations arrive sequentially in time is
well known, and there exists a wide range of statistical literature devoted to this problem. The
aim of this project is to develop a functional approximation method so as to perform real-time
inference with sequential data which are dependent on some underlying latent variable. The new
proposed method sequential INLA (SINLA) has derived its idea from Integrated Nested Laplace
Approximation (INLA) (Rue., Martino & Chopin 2009), a fast Bayesian approximation technique
where for a class of latent variable models the underlying latent variable follow a Gaussian Markov
Random Field (GMRF) (Rue & Held 2005).

1 Introduction

Many real-life problems require estimation of unknown quantities from observations that arrive se-
quentially in time. Often in such circumstances one is interested in performing inference sequentially
or ‘on-line’. In this paper, we will be concentrating on estimating the posterior distribution of the pa-
rameters associated with this sequential process using Bayes‘ theorem. The sequential process will be
modeled by a state-space approach, and the primary focus here will be a discrete-time formulation of
the process. Examples include single and multiple target tracking, estimating digital communication
signals, estimating of volatility of financial factors using for example stock market data. A state-space
model in discrete time can be conveniently written in the form of equations

yt = f(xt,ut,vt, θ1)
(1.1)

xt = g(xt−1,wt, θ2)
(1.2)

where vt is the observation error and wt is the system error. ut is the exogenous output that is fully
known. f and vt fully specify the likelihood of observations P(yt|xt, θt), while the transition density
P(xt|xt−1) is completely specified by g and wt. Θ is the set of hyperparameters (Θ1,Θ2) ≡ Θ.

The Kalman filter (Kalman 1960) has been the most widely used algorithm to deal with a
linear Gaussian system. Linearity of the model and Gaussian errors ensure exact expressions for the
estimate of the state process. However, most real-world problems require nonlinearity and/or non-
Gaussian errors. Extensions of Kalman filter exists that provide sub-optimal solutions to the problem.
Extended Kalman filter (EKF) (Anderson & Moore 1979), unscented Kalman filter (UKF) (Julier,
Uhlmann & Durrant-Whyte 1995), ensemble Kalman filter (G. 1994) and many more are examples of
such extensions. An absolutely different outlook is taken by Monte Carlo based methods like Particle
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filters (Doucet & Gordon 2001). A third way is using grid based methods (Pole & West 1990). The
curse of dimsionality prevented any further work on these type of filters. Our method uses a fast but
accurate grid based method for making inference about the hyper parameters.

2 Sequential Bayesian Estimation of Θ

The optimal method to sequentially update the posterior density of Θ as new observations arrive is
given here. Let the unobserved signal (hidden states) Xt, t ∈ N, Xt ∈ X be a GMRF, with initial
distribution being P(x0) and the transition equation P(xt|xt−1). The observed variables Yt, t ∈ N,
Yt ∈ Y are assumed to be conditionally independent given the latent process Xt, t ∈ N and Θ, and
has a marginal distribution P(yt|xt, θ).

We make use of Bayes Law and the structure of the state-space models, and factor the posterior
density in the following recursive form,

P (θ|y1:t) =
P (θ,y1:t)
P (y1:t)

=
P (θ,yt,y1:t−1)

P (y1:t)

=
P (θ,y1:t−1)

P (y1:t)
P (yt,y1:t−1, θ)

P (y1:t−1, θ)

(2.1)

=
P (θ|y1:t−1) P (yt|y1:t−1, θ)

P (yt|y1:t−1)

(2.2)

=
P (θ|y1:t−1)
P (yt|y1:t−1)

P (yt|y1:t−1,xt, θ) P (xt|y1:t−1, θ)
P (xt|y1:t, θ)

(2.3)

=
P (θ|y1:t−1)
P (yt|y1:t−1)

(
P (yt|xt, θ) P (xt|y1:t−1, θ)

P (xt|y1:t, θ)

∣∣∣∣
xt=x∗t (θ)

)(2.4)

where x∗t (θ) is some estimate of xt which allows the probabilities to be calculated at that value.
The above recursion formula, involving multi-dimansional integrals are only tractable for linear

Guassian systems, with Gaussian priors for the hyperparameters. The terms P (xt|y1:t−1, θ) and
P (xt|y1:t, θ) have very complicated forms themselves. One can use the Kalman filter or extensions of
Kalman Filter and other methods like Expectation Propagation (Minka 2001) to compute the estimate
x∗t (θ). INLA is used on the first few observations to make the initial grid for the parameters.

2.1 Dynamic Grid

First and foremost, the most important thing about dynamic grid should be mentioned. It is advisable
to try and create a situation where one doesn’t need to add on new grid points at every time point.
It slows the algorithm down, since a single extra grid increases the calculation exponentially. Hence
one should make the initial grid using INLA quite wide.

2.2 Internal new grid point

For each of the parameters we look at their marginal densities to determine the new grid points. Some
criteria can be defined based on the approximate densities of successive grid points which determines
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the requirement of a new point in between. The Euclidean distance between the density of two
successive points can be one such criterion. A linear interpolation scheme is used to calculate the
density of a new point between two existing points. It is less accurate than fitting a curve which
makes more sense in interpolating for a density but it is very easy to calculate and hence makes the
algorithm very fast.
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Figure 1: Approximate marginal distribution of one of the parameters after interpolating the density
for four new points.

2.3 External new grid point

The need to add more point to the grid on the edges of the existing ones is also quite complicated.
The joint distribution of the parameters tends to be “mobile” at the start of the iterations, until with
time it settles down into a grid which holds its place. This is because INLA is being used to get the
initial grid based on a small set of data, the mode of the density generally may not be close to the
“true” value. Note that linear extrapolation may work on a nonlinear curve at an extremely “local”
level. A very short term extrapolation should be a safe method then. At every time point, whenever
a situation arrives when the grid needs to be moved, a single (or a couple) of grid point is added at a
distance which is same as the one between the nearest two grid points.
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Figure 2: The extrapolation is done to a single point.

3 Results

This section provides various simulated examples of the SINLA approach with models varying from
linear Gaussian to further generalizations using fixed (over time) parameter θ.

3.1 Linear Gaussian model

A very standard linear Gaussian state space model is used to simulate data here. We tried to simulate
an experiment which can be described by the following: a single radio antenna is transmitting at
a fixed frequency and the signal is being received simultaneously at several spatially distinct nodes.
We assume the observable data to be noisy tri-variate realizations of a latent signal which follows an
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AR(1) model. The complete model thus has the form

yt = xt−11 + ηt

(3.1)

xt = φxt−1 + εt

(3.2)

where εt ∼ N(0, σ2
err) and ηt ∼ MVN (0,Σ). The entries of the covariance matrix Σ are of the

following type

Σii = σ2
obs Σij = σ2

bs exp−rd(i,j)

where r > 0 and d(i, j) is a measure of distance between nodes i and j. The set of unknown
hyperparameters is thus Θ = {φ, σ2

obs, σ
2
err} or equivalently taking the precision parameters Θ =

{φ, ρObs, ρSys}.
Data was generated by fixing the values at φ = 0.35, ρ2

Obs = 250, ρ2
Sys = 28.5, the value of r at

2/3 and the distance values were set at d(1, 2) = 1, d(1, 3) = 3 and d(2, 3) =
√

10. At each time point,
the approximate mode of the parameters are plotted. An approximate 95% confidence bound is also
plotted. Figure 3 shows us the true value of the parameters and the plot of the approximate mode
and intervals.
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Figure 3: The solid green line shows the “mode” of the parameters. The dotted blue line is the
marginal mode and the solid blue lines indicate the probability bounds.

The method seems to be working quite well here as all the three parameters stay within the
bounds. The approximate mode converges to the true values in about 1000 observations. The fact
that implementation of INLA on the first 20 observations provided us with very good starting values
for the grid also helped this case. A constant grid was sufficient in this case.

3.2 Nonlinear Gaussian model

A nonlinear model with additive gaussian errors was tried as our next simulated example. Data has
been generated from a model with nonlinearity in the observation equation,

yt = θx2
t + vt

(3.3)
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xt+1 = 4 + φxt + sin(ωπt) + wt

(3.4)

where vt ∼ N (0, σ2
Obs), wt ∼ N (0, σ2

Sys) and ω is assumed to be known. The hyperparameters
are given by the vector Ψ ≡

(
φ, θ, σ2

State , σ
2
Obs

)
. The values assigned to these hyperparameters

were (0.7, 2, 0.35, 0.0001) respectively and the value of ω was set at 1.718. A reparameterisation
of the variance parameters was done to felicitate computer arithmetic operations. Thus now we have
Ψ ≡ (φ, θ, ρState , ρObs) and their actual values are (0.7, 2, 2.87, 10000). The approximate mode and
confidence intervals we computed the same way as explained before. For each parameter the approxi-
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Figure 4: Plot of approximate mode and 95% confidence intervals that we get through the UKF based
method based on 5000 observations.

mate mode of the distribution defined on the grid seems to have converged approximately to the true
value for almost all the parameters, except for the parameter ρState , precision of the state equation
error. The observation precision looks like it stays constant over time but in reality it is making very
small moves.

3.3 Non-Gaussian model

Data was generated from a model which assumed that the observations came from a Poisson distri-
bution.The state process was assumed to be an AR(1) process with some mean.

yt ∼ Poisson(ext )
(3.5)

xt+1 = 2 + φxt + ηt

(3.6)

where ηt ∼ N (0, σ2
Sys). Our method was applied to an approximate form of this model with additive

Gaussian error

yt = ext + εt

(3.7)

xt+1 = 2 + φxt + ηt

(3.8)

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS044) p.819



where one more unknown parameter was introduced through εt ∼ N (0, σ2
Obs). Since our parameter

of interest are φ, σ2
Sys or equivalently φ, ρSys we will be monitoring the convergence of them. The real

values of the parameters are 0.35 and 0.1 respectively. The two parameters did not quite converge to
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Figure 5: Plot of approximate mode and 95% confidence intervals that we get through the UKF based
method based on 5000 observations.

the correct parametric values. Thats understandable in some sense since we are using a wrong model
here. Also since we are using UKF to estimate the state process, it has to be accurate in its estimation
of the state process.

4 Conclusion

The SINLA approach based on these simulated examples proves to be adequately accurate and if one
can keep the number of grid points to a minimum then is very fast. Further work is to be done in
models with non Gaussian error and also spatio-temporal models.
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