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Introduction

Cluster analysis (also known as unsupervised learning) is the counterpart to classification
(or discrimination) where the object of interest is the group structure in the data. Unlike
classification, which is a supervised learning technique, in clustering no a priori informa-
tion is available about the number (if any) or nature of groups in the data. The goal of
cluster analysis is to discover this information through exploration via graphical, algorith-
mic or modelling techniques. Many different methods for performing cluster analysis exist,
arising from Statistics, Social Science, Computer Science and other areas. Regardless of
the type of method, whether or not it is explicitly stated, there are always implicit shape
or space restrictions on the groups that each method finds. Selecting a particular approach
will then imply that this shape of group is the one that it has been decided is most use-
ful/appropriate for the particular setting. It has been argued by Hennig (2010) that there
is no perfect cluster analysis technique for every situation and that user knowledge, along
with understanding of the shape restrictions of different approaches, must be used to select
the appropriate method for each different context.
While little or nothing is known about group structure in the situation (although as stated
before, expert knowledge may be used to make assumptions about group shape), it is often
the case that the variables/measurements that the cluster analysis will be applied to, have
restrictions of their own. The most obvious one is type of measurement, usually split into
continuous or categorical (often further split into ordinal/nominal). There may be limits
(either physical or due to the sensitivity of recorder) to the upper and/or lower range
of the variable. Obvious examples of such include variables such as weight (inherently
non-negative), proportions (lying between 0 and 1), etc. Other types of more complex
restriction on the shape of the space the measurements fall in include hyperspheres or
simplices.
The setting for cluster analysis in this paper is the unit hypercube of arbitrary dimension.
For d variables/dimensions this means that all variables lie in the [0,1] interval. The
problem with possible group shape in hypercubes lies not in the centre, but at the corners,
where clouds of data points must by construction come to a point. Most standard clustering
methods have elliptical or spherical shape restrictions which may not be suitable for this
setting.
In addition to simulated data used to compare performance of the competing methods, a
real data-set from the cognitive diagnosis setting will be examined. Cognitive diagnosis
modelling is used to assess students’ attainment levels of skills based on electronic testing
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data.
Since an exhaustive examination of all possible cluster analysis methods would not be
possible in one paper, this paper looks at one of the most popular algorithmic methods:
k-means, both on the original hypercube data and arcsine transformed data, as well two
model-based methods: model-based clustering (Gaussian mixture models) and a finite mix-
ture of beta densities. The Methods section will give a brief review of the basics of k-means
and model-based clustering, and a more in-depth explanation of the finite mixture of betas
approach approach. These approaches will then be applied to simulated data in the Sim-
ulations section and the results compared. The Education Testing Example section will
introduce a real life cognitive diagnosis dataset and discuss the difficulties inherent in this
particular dataset. The different methods will then be applied and the results compared.
The performance of the methods and recommendations based on this will be presented in
the final Conclusions and Discussion section, as well as other possible approaches in the
Education Testing setting.

Methods
K-Means

K-means is one of the mostly commonly used methods and often the first or only one taught
in multivariate statistics classes. It is an algorithmic method which does not specify a sta-
tistical model to be fit, rather instead defines goodness in clustering in terms reducing the
sums of squares between observations and their cluster centres. The objective function
being minimized for observations x1, . . . , xn for G clusters is:

f(x1, . . . , xn) =
G∑
g=1

∑
i:c(i)=g

(xi − x(g))2

where c(.) is the cluster allocation function, identifying which cluster each observation
belongs to and x(g) is the mean of all observations allocated to cluster g.
In practice Ward’s method is used to find an approximate solution (rather than computing
the objective function for all possible combinations of allocations). This is an iterative
procedure, which begins with either an initial set of allocations of all observations to
clusters or a set of all clusters’ starting means, then alternates the following two steps
until allocations no longer change. One step, given a set of cluster means, allocates each
observation to the nearest cluster based on Euclidean distance from the cluster mean. The
other step, given a set of observations’ allocations to clusters, re-calculates the cluster
means by averaging the allocated observations within each cluster. Since the algorithm
is not guaranteed to find the global minimum sum of squares, it is prudent to run the
algorithm with multiple random starts and use as the solution the best one in terms of
sums of squares.
When using k-means there are 2 main caveats. Firstly, the number of clusters to be
found must be specified in advance. While there may be guidance to what the number
of cluster may be in some settings, often this is as much a question of interest as the
actual make-up of the clusters to be found. Secondly, there is an implicit assumption of
conditional independence of the variables within clusters and that each group to be found
has spherical shape and the volume of space taken up is equal across clusters. Mainly,
issues arise due to non-spherical groups, where larger numbers of clusters are needed to
account for dependence within a group or occasionally there may be a larger amount of
variation in one variable than others. Scaling/standardizing the data pre-analysis may help
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with the later issue (but not always).
In order to select the number of clusters, the usual procedure is to run k-means separately
for a range of numbers of clusters (each with multiple random starts to attempt to avoid
local minima) and a line-plot of the sums of squares for each number is drawn. The
number of clusters is usually selected where the sum of squares ceases decreasing sharply,
the “elbow” of the plot.

Arcsine Transformation

Since many popular cluster algorithms will work well with data containing normally or
nearly normally distributed groups, one approach is to transform data from the hypercube
to another space.
The arcsine transformation is a common transform usually used with binomial(n, p) vari-
ables to make their distribution as normal as possible and to reduce the dependence of the
variance of the (transformed) distribution on the p parameter. Given a realisation xi from
a Bin(ni, p) variable, the transformed realisation yi is computed as follows:

yi = sin−1
(√

xi
ni

)
The distribution of yi is then approximately normal with mean sin−1(

√
p) and variance 1

4ni
.

In practice we may not have information about binomials but merely an estimate p̂ij for
each observation i and each variable j so the transformation is simply: yij = sin−1

(√
p̂ij
)
.

If other methods fail due to lack of normality in the groups, using the arcsine transform
before applying them may produce a better result.

Finite Mixture Clustering Approaches

When continuous data is involved, the usual model-based approach is a finite mixture of
multivariate normals. A finite mixture model for a population allows each sub-population
to be modelled with its own density and the overall population to be modelled by a weighted
average of these densities. The weights give the proportions of each sub-population found
in the population. The general equation for a finite mixture with G component densities
is:

f(x) =
G∑
g=1

πgfg(x),

where 0 ≤ πg ≤ 1 and
∑G
g=1 πg = 1. The πg are the weights or mixture proportions and

the fg are the component densities. It is quite common for all the component densities to
be from the same parametric family (e.g. Gaussian) and only to vary by parameters across
components (e.g. means and/or covariance matrices).
Advantages of this approach include automatic methods based on model selection for allow-
ing the data to dictate the number of clusters (by the number of mixture of components),
or principled variable selection methods also based on model selection.
The most convenient method of estimation with a mixture model is the EM algorithm
(Dempster et al 1977). Missing data is defined as the unknown group membership variables:
zi = (zi1, . . . , ziG), where zig = 1 if observation xi belong to component g and 0 otherwise.
The E-step, which estimates the missing data (given current parameter estimates) is given
below:

ẑig =
π̂gf̂g(xi)∑G

g′=1 π̂g′ f̂g′(xi)
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where π̂g are the current estimates of the mixture proportions and f̂g(xi) is the gth com-
ponent density with the current parameter estimates plugged in, evaluated at xi.
The EM algorithm can be used to find estimates for a fixed number of components G. The
question of selecting the “correct” number of components to fit the data is answered by
model selection. The maximized log-likelihoods for the model with a range of different G’s
(from 1 up to some sensible maximum number) is found (via the EM estimates). The BIC
score for each different G is then computed via the equation:

BIC(model) = 2×max log-likelihood− ν log(n)

where ν is the number of independent parameters estimated in the model and n is the
number of observations. The difference in BIC scores between two models approximates
two times the Bayes factor between the two. In the case of normal mixtures (where the
true model is a normal mixture), it has been shown to be consistent. However, in the
presence of noise variables with no group information, Raftery and Dean (2006) has shown
that BIC can perform poorly unless some form of variable selection is carried out. This
issue is not addressed here but remains an important future consideration.

Model-based Clustering

In model-based clustering (also know by Gaussian mixture models and other titles), the
component densities are Gaussians with parameters: mean vectors and covariance matri-
ces either constrained or free to vary across components. More details about model-based
clustering can be found in Fraley and Raftery (2002).
Since Gaussians have elliptical corners and we know that groups at the corners of the hyper-
cube will not have this shape (also the range of the Gaussian is infinite and the hypercube
has finite unit range) the arcsine transformation will be used on the data before application
of this methodology (using BIC to select the number of components). For interpretation,
the estimated component means can be transformed back to the original space.

Finite Mixture of Beta Distributions

In this applicatio,n since we are working in the unit hypercube of dimension d, i.e. [0, 1]d,
we need the component densities to have a similar range. Therefore, the beta density is
proposed. We use the assumption of conditional independence to allow each variable’s beta
density to be independent of the others (allowing the multivariate density to be a prod-
uct of univariate densities) within each component. This means that for a d-dimensional
hypercube and vector x = (x1, . . . , xd), we have:

fg(x) =
d∏
j=1

Γ(αjg + βjg)
Γ(αjg)Γ(βjg)

x
αjg−1
j (1− xj)βjd−1,

and therefore the mixture model is:

f(x) =
G∑
g=1

πg d∏
j=1

Γ(αjg + βjg)
Γ(αjg)Γ(βjg)

x
αjg−1
j (1− xj)βjd−1


Aside from the issue of whether conditional independence is a sensible assumption to make,
another consideration is the shape of the beta density. While hugely flexible (see Figure
1), if both αjg and βjg parameters are less than 1, the density becomes bimodal. Since the
interpretation of such a cluster would be problematic, we constrain the pararmeters to be
greater than or equal to 1 at all times (without too much loss of flexibility).
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Figure 1: Examples of different beta densities

The E-step for the EM algorithm is as before with
f̂g(xi) =

∏d
j=1

Γ(α̂jg+β̂jg)

Γ(α̂jg)Γ(β̂jg)
x
α̂jg−1
j (1 − xj)β̂jd−1 where α̂jg, β̂jg are the current component

parameter estimates. The M-step, which estimates the model parameters, both πg’s and
αjg, βjg’s, given the current estimates of the group membership variables ẑi, has no closed
form for the solution, so constrained numerical maximization is used at each M-step.
Given a particular value of G, initial starting values are needed for the EM algorithm. The
algorithm in this case is sensitive and random starting values (for either parameters or
membership vectors) will result in poor output. K-means results can be used to initialize
the EM algorithm. The method of moments is used to get rough initial estimates in the
following way.

1. If we have K-means classification c() where c(i) = g means xi belongs to cluster g
then we can get jth variable’s sample cluster mean

(
x̄

(j)
g = 1

N

∑
i:c(i)=g xij

)
and vari-

ance
(
v

(j)
g = 1

N

∑
i:c(i)=g(xij − x̄

(j)
g )2

)

2. Matching these to the mean
(

αjg

αjg+βjg

)
and variance

(
αjgβjg

(αjg+βjg)2(αjg+βjg+1)

)
of the

beta distribution with parameters αjg and βjg gives us:

α̂jg = x̄(j)
g

(
x̄

(j)
g (1− x̄(j)

g )

v
(j)
g

− 1

)

β̂jg = (1− x̄(j)
g )

(
x̄

(j)
g (1− x̄(j)

g )

v
(j)
g

− 1

)
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Simulations

The first simulation is a simple 1-d example with 2 groups. This data is generated as
a 50:50 mixture from two betas, one with shape parameters 1 and 3 and the other with
parameters 5 and 1. A histogram of the data with the true mixture density superimposed
as a line is given on the left of Figure 2. The arcsine transformed data is given on the
right. In both, one can clearly see two peaks and the transformation has done a good job
of normalizing the groups. Results of the various clusterings are shown in Table 1
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Figure 2: One-dimensional two-component beta mixture example

All methods (sometimes once they were fixed on the true number of groups) performed
similarly. The beta mixture does best (as would be expected given the generation of the
data), automatically selecting the best number of clusters and with the lowest number of
misclassifications. The shape parameters estimated from EM were 1.00, 4.07 and 5.56, 1.3
for the two components respectively.

The second example has 100 2-dimensional datapoints generated by truncated normals
with means at the four corners of the hypercube (unequal numbers of points in different
groups). The data (original and arc-sine transformed) is plotted in Figure 3. Results are
given in Table 2. This shows a similar pattern of results to the previous example, with the
transformation working well to improve clustering results compared to the original data.

Educational Testing Example

In educational testing, the main goal is to estimate students’ current mastery of skills.
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Table 1: Clustering results on one-dimensional two-component beta mixture

example

Method and Number of clusters/ Number of points
data used components chosen misclassified

(* denotes fixed in advance)
K-means on original data 2* 12
K-means on transformed data 2* 13
Model-Based Clustering
on original data 4 98
Model-Based Clustering
on original data 2* 13
Model-Based Clustering
on transformed data 2 13
Beta-mixture
on original data 2 11
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Figure 3: Two-dimensional four group example
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Table 2: Clustering results on two-dimensional four group example

Method and Number of clusters/ Number of points
data used components chosen misclassified

(* denotes fixed in advance)
K-means on original data 4* 2
K-means on transformed data 4* 13
Model-Based Clustering
on original data 6 30
Model-Based Clustering
on original data 4* 2
Model-Based Clustering
on transformed data 4 1
Beta-mixture
on original data 4 1

Given the infiltration of technology into schools and the increasing use of computers for
testing and tutorials, teachers want to get skill estimates quickly from large amounts of
data. The current assumption in the cognitive diagnosis community is that student’s skill
mastery at a given time is either 0 or 1 (i.e. discrete and only in the corners of the
hypercube). We believe it is not unreasonable for the skill mastery to fall in the range
[0,1]. A student may have complete (1) or non-mastery (0) of a skill but may also be able
to use the skill only in some, not all, settings (an intuitive estimate would be between 0
and 1). Therefore for d skills, the data-space will be a d-dimensional unit hypercube.
Given estimates of the students’ skill mastery profiles, the goal is to group students so that
tailored group-level tutoring can be possible. Further examination of the identified clusters
may be able to identify which skills are weakest/strongest in each cluster. The algorithm
needs to work in as close to real-time as possible. Current MCMC approaches in this area
are only feasible for approximately 15 skills which is limited. The mixture model should
be able to handle a higher number without too much of a bottle-neck in computing time.
The estimate, based on Ayers et al (2008) for skill mastery is called the capability matrix,
with an entry for each of N students and each of K skills. For each student and each
skill the ratio of correct answers for questions involving the skill to number of questions
involving the skill attempted, gives the capability estimate. The data from the Assistment
project (Ayers et al 2008) gives information on 3 mathematical skills: evaluating functions
(8 questions), multiplication (20 questions) and unit conversion (2 questions). There are 26
questions of 3 types: 6 involving only evaluating functions, 18 involving only multiplication
and 2 involving both unit conversion and multiplication. 551 students sat this test. Since
not all students saw all questions, there will be missing data in the response. However,
as long as the student has attempted at least one question per skill, a capability estimate
is possible. Since only 2 out of 26 questions involved unit conversion, it is likely that
many students will not have seen either and no estimate of unit conversion skill can be
made. For this example, a complete case analysis is used (only students with all 3 skill
capability estimates are analyzed) but because of conditional independence, it would be
easily possible to allow observations with missing data in the beta mixture model without
need for imputation. The skill profile estimates in the 3-dimensional unit hypercube are
plotted in Figure 4.
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Figure 4: Assistment mathematics skills example

The initial issue that is apparent, is that the data lie in the three 2-dimensional sub-
planes of the space. This is due to the fact that there were only 2 questions involving unit
conversion, therefore only 3 values were possible for this skill estimate: 0 (0 out of 1 or
out of 2 questions right), 1/2 (1 out of 2 right) and 1 (1 out of 1 or 2 out of 2 right). The
cluster methods are applied to each plane in turn (101 observations in plane 0, 415 in plane
0.5 and 35 in plane 3), the issue of dimension reduction being left to another paper. The
results for all methods (except for k-means which we don’t have a cluster number to be
set) are given in Table 3.

Table 3: Clustering results on Assistment Data

Method and data used Number of clusters/components chosen
(Unit Conversion plane 0, plane 0.5, plane 1)

Model-Based Clustering
on original data 21 (19, 1, 1)
Model-Based Clustering
on transformed data 31 (15, 1, 15)
Beta-mixture
on original data 5 (2, 1, 2)

While the true number of groups is not know, both model-based clustering results seem
high (particularly for planes 0 in both and 1 in the transformed data result). Some of this
is down to the fact, that due to the granularity of the data (evaluating functions has only
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8 questions), a large number of observations lie on top of each other on the same points.
Model-based clustering attempts to model these with their own components while the beta
mixture model does not.

Conclusions and Discussion

The arc-sine transform seems to do an excellent job of normalizing the data groups, allowing
the use of more traditional clustering methods and model-based clustering. While k-means
does well, there is no automatic method for choosing number of clusters, model-based
clustering on the transformed data gets around this. In practice, there will likely be a
limited number of special helpers to allow group-work within the classroom. Therefore,
the goal may be to find the best clusters for a given number of groups G which would
be possible in all approaches listed here by fixing the number of clusters/components. In
addition, there may be an interest in the hierarchical structure of the groups (which are
closest together and in what way) which cannot be addressed by k-means or mixtures
directly (although distance between cluster means could be used to provide a post-hoc
hierarchy) but can be dealt with via hierarchical agglomerative clustering. This can be
based on distances or mixture models as needed.
The mixture model approach is attractive because of its flexibility and automatic decision-
making. Variable selection could be incorporated into the mixture model approaches dis-
cussed in this paper without much difficulty (allowing the selection of variables/skills in
the set that differentiate between groups). If it is suspected that correlation in the groups
may be causing an overestimation in the number of groups by number of clusters, mixture
models can use the methodologies proposed in Hennig (2010) to look at combining com-
ponents to estimate more complicated group estimation than is allowed by the conditional
independence assumption.
In the Assistment example, the capability estimate of Ayers et al (2008) which gives data
in a unit hypercube was used as the basis of all cluster approaches. However, this quantity
allows for no confidence to be given for the estimate, e.g. an estimate of 0.7 is much more
confident for 70 out of 100 correct than for 7 out of 10, but this information is lost if the
only reported number is the capability without context as to the number of questions/trials
that produced it. Instead of a finite mixture of betas, a more appropriate approach may
be a finite mixture of binomials, looking at the number of questions attempted by each
student and the number of correct answers.
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