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Abstract: Different approaches have been proposed for fitting log linear models to 

contingency tables based on complex survey data. One approach seeks to handle 

differential sampling via an offset term in the model. A second pseudo maximum 

likelihood approach fits models to the weighted table. This paper will investigate and 

compare the properties of inference procedures for these methods. Point estimation, 

variance estimation and testing will be considered. The case when survey weights are 

constant within the cells of the table will be contrasted with the case when they are 

variable. Some empirical illustration will be provided using data from a survey in France 

collecting data on daughter’s and father’s social class. 

 
 

1. Introduction 

Categorical variables are common in social survey data. A natural approach to 

analysing data on categorical variables is via Poisson log linear models. This paper 

considers the question of how to take account of complex sampling schemes when fitting 

such models. For more background and literature references see Skinner and Vallet 

(2010). 

 

 

2. The Log-linear Model and Bernoulli Sampling 

Consider a contingency table formed by cross-classifying two or more categorical 

variables.  Let k denote a generic cell in the table ( 1,...,k M= ) and let 
kN  denote the 

population frequency in cell k. Suppose the 
kN  are generated as outcomes of independent 

Poisson random variables with means 
kµ . We consider the log linear model: 

 

log( ) Xµ λ= ,       (1) 

 

where log( )µ  is the 1M ×  vector with elements log( )kµ , X  is an M p×  model matrix 

containing specified values, usually either 0 or 1, and λ  is a 1p× vector of unknown 

parameters, where p M≤ . 

 

The Poisson distribution has the property that it is preserved under Bernoulli sampling. 

Thus, if Bernoulli sampling with inclusion probability 
kπ  is used in cell k  then the 

sample frequency 
kn  in this cell is also Poisson distributed with mean 

k kπ µ . Hence, a 

log-linear model for the sample frequencies, may be expressed as: 
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   log( ) log( )s Xµ π λ= + ,    (2) 

 

where log( )sµ and log( )π  are the 1M ×  vectors containing log( )k kπ µ  

and log( )kπ respectively. The parameter vector λ  may then be estimated using maximum 

likelihood (ML), by treating log( )π  as an offset term in the model.  

 

 

3. Estimation under More General Sampling Schemes 

The use of ML to estimate λ  above depends on the restrictive assumption that the 

inclusion probabilities are fixed within cells. We now consider the case when these 

probabilities may vary between units (and, in particular, within cells).   

 

Consider, for simplicity, the case when there is only a finite number of possible 

values of the sample inclusion probabilities, denoted 1 2, ,..., Hπ π π . We shall refer to the 

different parts of the population which are sampled with different probabilities as strata 

and assume that units in stratum h are selected by Bernoulli sampling with probability hπ  

( 1,2,...,h H= ).  

Let 
khN  be the population count in cell k in stratum h, so that 

1

H

k kh
h

N N
=

= ∑ . Suppose 

that the khN  are generated independently as Poisson random variables: 

( )kh khN Poisson µ∼ . This implies that ( )k kN Poisson µ∼ , where 
1

H

k kh
h

µ µ
=

= ∑ , and also 

that the numbers khn  of sample units which fall into cell k and stratum h are 

independently distributed as: ( )kh h khn Poisson π µ∼ . It follows that the distribution of 

1

H

k kh
h

n n
=

= ∑  is also Poisson i.e. ( )k skn Poisson µ∼ , where 
1

H

sk h kh
h

µ π µ
=

= ∑ .  

 

These assumptions thus preserve the assumption in section 2 that the sample 

frequencies in the cells are Poisson distributed but allow for possible variation in the 

inclusion probabilities. Assuming that the population frequencies obey the log-linear 

model in (1), it no longer appears possible to express the model for the sample 

frequencies as in (2), where the inclusion probabilities only appear as an offset term.   

 

A full ML approach for the stratified sampling approach above would seem to require 

a specification of a model for the 
khµ . We shall not pursue such an approach here, 

assuming that the analyst only wishes to specify a model for the population, aggregated 

across strata.    

 

An alternative simpler approach was proposed by Clogg and Eliason (1987). They 

viewed kπ  as the expected sampling fraction /k kn N  in cell k, and proposed to estimate 

this fraction by by ˆ/k k kz n N= , where ˆ
kN  is the sum of survey weights across sample 
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units in cell k, i.e. the Horvitz-Thompson estimator of 
kN . They then modified model (2) 

to the following expression: 

 

log( ) log( )s z Xµ λ= +      (3) 

 

where log( )z  is the 1M ×  vector containing the log( )kz and proposed to fit this model  

using conventional ML methods, treating log( )z as an offset. 

      

Expression (3) does not strictly provide a model for the expected values of the sample 

frequencies, 
sµ , since log( )z is sample-dependent. If we replace 

kn  in
kz by its 

expectation, the kth element of 
sµ , we see that these terms cancel in (3) and this 

expression may be rewritten as: 

 

   ˆlog( )N X λ=        (4) 

 

where ˆlog( )N  is the 1M ×  vector containing the ˆlog( )kN . This corresponds to a pseudo 

ML approach (Rao and Thomas, 1988). In fact, Skinner and Vallet (2010) show that 

applying conventional ML fitting to (3) does not lead to an identical point estimator to 

the pseudo ML estimator.  Both estimators may be expressed as solutions of the 

estimating equation: 

 

ˆ{ exp( )} 0k k k k ka N x xλ− =∑ ,    (5) 

 

where kx  is the k
th

  row of X , 1ka =  for the pseudo ML approach and k ka z=  for the 

Clogg-Eliason approach. Both estimators are consistent when model (1) holds although 

they may converge to different values if the model fails. Considering the class of 

estimators defined by alternative values of ka  and assuming that model (1) and the 

stratified sampling assumptions above hold, the Clogg-Eliason point estimator has 

minimum large sample variance if the stratum selection probabilities are constant within 

cells. In general, however, this approach will not be optimally efficient. The pseudo ML 

point estimator will be efficient when the stratification variable is essentially independent 

of the variable defining the cells, but not in general.  

 

 

4. Variance Estimation 

Skinner and Vallet (2010) show that the use of conventional ML estimation methods 

based upon expression (3), treating log( )z as an offset as proposed by Clogg and Eliason 

(1987), leads in general to inconsistent variance estimation and, in particular, to 

underestimation of standard errors. They propose that, instead, conventional linearization 

or replication methods are employed for variance estimation.  
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5. Empirical Comparison of Approaches 

We now set out to compare the Clogg and Eliason (1987) and pseudo ML (hereafter 

denoted CE and PML) approaches empirically. Further details are provided in Skinner 

and Vallet (2010). We use data from the 1985 Enquête Formation & Qualification 

Professionnelle, a survey with complex sampling design conducted by the French 

Statistical Office. The survey covered persons aged between 13 and 69 in 1982. It was 

administered to a stratified sample of 46,500 individuals drawn from a 1982 master 

sample with stratum sampling fractions that varied between about 1/200 and 1/2690. 

There were 73 strata, defined by nationality, labour market position, socio-economic 

class and age group. Weights were constructed to take account not only of the different 

sampling fractions but also for missing data. The weights were ratios of census counts to 

counts of survey respondents within weighting classes defined by the strata cross-

classified with residential area at the census (rural, urban, or Parisian). 

 

The analysis here is restricted to the sub-sample of 5,159 women, with French 

nationality at the date of the survey, aged between 35 and 59 at the end of December 

1985, currently employed at the date of the survey, and who reported information about 

their current socio-economic class and their father’s socio-economic class when they 

stopped attending school or university on a regular basis. The 5,159 women belong to 18 

different strata with initial sampling fractions varying between 1/310 and 1/2500.  

 

The analysis is based on the 7 x 7 two-way contingency table that cross-classifies 

women’s socio-economic class with their father’s socio-economic class when they 

stopped attending school or university on a regular basis. The mobility table uses a 

discrete and unordered socio-economic classification defined as follows: (1) higher-grade 

salaried professionals; (2) company managers and liberal professions; (3) lower-grade 

salaried professionals; (4) artisans and shopkeepers; (5) non-manual workers; (6) foremen 

and manual workers; (7) farmers. Table 1 presents both unweighted frequencies and 

weighted frequencies in the mobility table after rescaling the latter to the exact sample 

size. 

 

The objective of the analysis is to investigate the structure and strength of the 

association between father’s socio-economic class and daughter’s socio-economic class 

in 1985 within French society. A log-linear model proposed by Hauser (1978, 1980) is 

employed, which defines two-way interaction effects by constraining some of them to be 

equal across cells of the contingency table. Assuming that i  and j  respectively index 

father’s class and daughter’s class, that the cells )j,i(  are assigned to K  mutually 

exclusive and exhaustive subsets and that each of those sets shares a common interaction 

parameter kδ , the logged expected frequency in cell )j,i(  of the mobility table is 

expressed as follows: 

 

ij i j klog µ α β γ δ= + + +  if the cell )j,i(  belongs to subset k . 

Thus, aside from total (α ), row (
iβ ), and column ( jγ ) effects, each expected 

frequency is determined by only one interaction parameter ( kδ ) which “reflects the 
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density of mobility or immobility in that cell relative to that in other cells in the table” 

(Hauser, 1980, p.416). The interaction parameters of the model may therefore “be 

interpreted as indexes of the social distance between categories of the row and column 

classifications” (Hauser, 1980, p.416). 

Vallet (2005) used sociological hypotheses to build such a model of the father-

daughter mobility table with 7=K  interaction parameters. The specification of the 

subsets of cells in the initial and final models presented in Table 3 is discussed in Skinner 

and Vallet (2010). Goodness of fit tests presented by Mason (2010) suggest that the final 

model provides a good fit to the data. The initial model fits less well and goodness of fit 

tests are on the verge of rejecting it at the 95% level. 

 

For the initial and final models, estimates and standard errors  are now presented 

based upon four different approaches: the standard ML approach for the tables of 

unweighted frequencies and of weighted rescaled frequencies; the CE approach; and the 

PML approach. For details of computation, see Skinner and Vallet (2010). 

 

Table 3 presents parameter estimates and standard errors obtained for the initial and 

final models under all four approaches. Consider the point estimates first. The estimates 

obtained by applying the standard ML approach to the weighted rescaled table are 

identical to those from the PML approach as expected. Thus, there are really just three 

sets of point estimates to compare. The most marked differences are between the 

unweighted estimates and the other two (PML and CE) estimates. As discussed earlier, 

both these estimators will be approximately unbiased if the model is true. We cannot be 

certain that either of the models is true but it seems reasonable to view the differences 

between the unweighted estimates and the other two estimates as evidence of bias in the 

former procedure. This bias is especially pronounced in the case of the jγ  parameters 

and this may be attributed to the strong correlation between the column variable 

(women’s socio-economic class in 1985) and one of the stratifying variables (women’s 

socio-economic class at the census) upon which the sampling is differential. The PML 

and CE estimates are broadly similar and should not lead to any difference in substantive 

interpretation for either model. Leaving aside consideration of the standard errors, there 

seems no strong reason to prefer one set of estimates to the other. One possible argument 

in favour of the PML estimator, following Patterson et al. (2002) and mentioned in 

section 6.2, is that the PML estimator is ‘estimating’ a well-defined population quantity if 

the model is false, whereas the CE estimator is then estimating a quantity dependent on 

the arbitrariness of the sampling scheme. 

 

As regards standard errors in Table 3, only those for the PML estimator have been 

estimated in a way which takes appropriate account of the complex sampling. Since the 

weighted rescaled and the PML point estimators are identical, the differences between the 

standard errors for these two estimators demonstrate that the former method can often 

lead to seriously incorrect standard errors. Standard errors were also calculated for the 

unweighted point estimators using the jackknife method and that these too can differ 

from the values in Table 3, although the differences are more minor. No further comment 

is made on these results, however, since the unweighted point estimators show clear bias 

and their standard errors are of little interest. 
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The standard errors of the CE point estimator obtained via a valid jackknife approach 

are compared in Table 4 with those obtained via the CE approach. The CE approach is 

seen to underestimate the standard errors uniformly. The jackknife value is often at least 

10% higher and sometimes at least 20% higher. This empirical investigation therefore 

illustrates how the CE variance estimator can systematically underestimate the true 

variability. Moreover, in Table 3 the standard errors obtained under the CE approach are 

virtually identical to those of the unweighted approach. Hence the device of including the 

offset term in the model seems to provide virtually no benefit in capturing the effect of 

unequal sampling weights on the standard error.  

 

Finally, the jackknife estimates for the CE estimator in Table 4 may be compared with 

the jackknife estimates for the PML estimator in Table 3. These are very similar. This is 

not surprising since the values of the point estimators were similar too. It implies that, at 

least for this application, there is no evidence of an efficiency advantage of the CE point 

estimator compared to the PML approach. 

 

 

6. Conclusions 

Approaches to estimating a log linear model in the presence of complex sampling 

schemes have been compared, both theoretically and via an empirical study. One 

approach, proposed by Clogg and Eliason (1987), adds an offset term to the model and 

employs conventional maximum likelihood. Another approach is pseudo ML. With 

respect to point estimation, little reason was found to prefer one method over the other. 

With respect to variance estimation, the use of the standard ML variance estimation 

approach proposed by  Clogg and Eliason was found to lead to underestimation and is not 

recommended. The pseudo ML approach provided appropriate standard errors.  
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 Table 1 – Unweighted frequencies and weighted (rescaled) frequencies in the mobility table 

 
 

                  Daughter’s class 

 

Father’s class 

 

 

Frequency 

1 2 3 4 5 6 7 Total 

1 Higher-grade salaried 

  professionals 

Unweighted 

Weighted 

 

164.00 

81.23 

 

25.00 

13.01 

 

136.00 

113.18 

 

12.00 

15.35 

 

59.00 

66.32 

 

9.00 

8.08 

 

0.00 

0.00 

 

405.00 

297.17 

 

2 Company managers and 

  liberal professions 

Unweighted 

Weighted 

 

56.00 

28.78 

 

27.00 

11.72 

 

37.00 

38.22 

 

14.00 

14.46 

 

28.00 

32.45 

 

3.00 

2.65 

 

3.00 

7.01 

 

168.00 

135.29 

 

3 Lower-grade salaried 

  professionals 

Unweighted 

Weighted 

 

95.00 

48.08 

 

16.00 

11.44 

 

161.00 

129.70 

 

15.00 

22.79 

 

115.00 

131.79 

 

18.00 

18.20 

 

4.00 

4.77 

 

424.00 

366.78 

 

4 Artisans and shopkeepers Unweighted 

Weighted 

 

97.00 

52.25 

 

35.00 

21.35 

 

219.00 

174.45 

 

78.00 

118.41 

 

200.00 

223.37 

 

35.00 

39.57 

 

8.00 

14.27 

 

672.00 

643.67 

 

5 Non-manual workers Unweighted 

Weighted 

 

59.00 

30.18 

 

7.00 

3.68 

 

145.00 

120.03 

 

32.00 

53.42 

 

182.00 

216.57 

 

29.00 

28.65 

 

3.00 

4.17 

 

457.00 

456.70 

 

6 Foremen and manual 

  workers 

Unweighted 

Weighted 

 

128.00 

64.18 

 

18.00 

14.88 

 

419.00 

361.46 

 

124.00 

184.12 

 

930.00 

1065.19 

 

339.00 

355.76 

 

37.00 

47.06 

 

1995.00 

2092.66 

 

7 Farmers Unweighted 

Weighted 

 

38.00 

20.29 

 

8.00 

5.63 

 

164.00 

134.71 

 

73.00 

101.98 

 

342.00 

394.83 

 

136.00 

140.49 

 

277.00 

368.80 

 

1038.00 

1166.73 

 

Total Unweighted 

Weighted 

637.00 

324.99 

136.00 

81.71 

1281.00 

1071.75 

348.00 

510.54 

1856.00 

2130.52 

569.00 

593.40 

332.00 

446.08 

5159.00 

5159.00 

 

Note: Weighted frequencies are rescaled to the sample size by multiplying them by the ratio 5159/4386881. 

 

 

 

Table 2 – Initial model and final model for the structure of the association in the mobility table 

 

Initial model 1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II III IV V VI VII VII 

2 – Company managers and liberal professions III II IV IV VI VII VII 

3 – Lower-grade salaried professionals IV IV IV V V VI VII 

4 – Artisans and shopkeepers V IV V IV V VI VI 

5 – Non-manual workers VI VI V V V V VI 

6 – Foremen and manual workers VII VII VI VI V IV V 

7 – Farmers VII VII VII VI VI V I 

 

Final model 1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II II III IV V VI VII 

2 – Company managers and liberal professions II II III III V VI IV 

3 – Lower-grade salaried professionals III III III IV IV V VI 

4 – Artisans and shopkeepers IV III IV III V V V 

5 – Non-manual workers V V IV IV IV V V 

6 – Foremen and manual workers VI VI V IV IV III IV 

7 – Farmers VII VI VI IV V IV I 

 

Note: Rows and columns in the matrices respectively correspond to father’s socio-economic class and daughter’s socio-economic 

class. Among the interaction effects, I is supposed to be the strongest and VII the weakest. 
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Table 3 – Comparison of parameter estimates and standard errors (in parentheses) 

Parameter 

Initial model Final model 

Unweighted 
Weighted 

rescaled 

Clogg & 

Eliason 

Pseudo 

maximum 

likelihood 

Unweighted 
Weighted 

rescaled 

Clogg & 

Eliason 

Pseudo 

maximum 

likelihood 

1β  (se) 
-1.813 

(0.087) 

-1.825 

(0.086) 

-1.828 

(0.086) 

-1.825 

(0.098) 

-1.747 

(0.084) 

-1.754 

(0.083) 

-1.763 

(0.083) 

-1.754 

(0.093) 

2β  (se) 
-2.626 

(0.107) 

-2.621 

(0.108) 

-2.612 

(0.106) 

-2.621 

(0.133) 

-2.663 

(0.102) 

-2.610 

(0.105) 

-2.632 

(0.102) 

-2.610 

(0.125) 

3β  (se) 
-1.532 

(0.079) 

-1.559 

(0.078) 

-1.549 

(0.079) 

-1.559 

(0.090) 

-1.492 

(0.076) 

-1.517 

(0.075) 

-1.514 

(0.076) 

-1.517 

(0.085) 

4β  (se) 
-0.856 

(0.069) 

-0.857 

(0.067) 

-0.855 

(0.070) 

-0.857 

(0.079) 

-0.633 

(0.061) 

-0.614 

(0.059) 

-0.643 

(0.061) 

-0.614 

(0.068) 

5β  (se) 
-1.134 

(0.072) 

-1.104 

(0.072) 

-1.111 

(0.073) 

-1.104 

(0.082) 

-1.036 

(0.067) 

-1.013 

(0.065) 

-1.021 

(0.067) 

-1.013 

(0.075) 

6β  (se) 
0.492 

(0.049) 

0.510 

(0.049) 

0.505 

(0.049) 

0.510 

(0.056) 

0.487 

(0.048) 

0.507 

(0.047) 

0.497 

(0.048) 

0.507 

(0.054) 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ  (se) 
2.187 

(0.149) 

1.179 

(0.139) 

1.261 

(0.149) 

1.179 

(0.166) 

2.177 

(0.148) 

1.196 

(0.138) 

1.238 

(0.148) 

1.196 

(0.157) 

2γ  (se) 
0.585 

(0.169) 

-0.269 

(0.169) 

-0.182 

(0.170) 

-0.269 

(0.205) 

0.450 

(0.167) 

-0.373 

(0.167) 

-0.321 

(0.167) 

-0.373 

(0.198) 

3γ  (se) 
2.889 

(0.140) 

2.360 

(0.120) 

2.424 

(0.140) 

2.360 

(0.150) 

2.855 

(0.139) 

2.341 

(0.119) 

2.376 

(0.139) 

2.341 

(0.146) 

4γ  (se) 
1.473 

(0.147) 

1.508 

(0.124) 

1.555 

(0.148) 

1.508 

(0.156) 

1.204 

(0.147) 

1.253 

(0.124) 

1.282 

(0.147) 

1.253 

(0.153) 

5γ  (se) 
3.089 

(0.137) 

2.895 

(0.116) 

2.943 

(0.137) 

2.895 

(0.143) 

3.167 

(0.137) 

2.971 

(0.116) 

3.003 

(0.137) 

2.971 

(0.144) 

6γ  (se) 
1.605 

(0.146) 

1.297 

(0.126) 

1.349 

(0.146) 

1.297 

(0.150) 

1.638 

(0.146) 

1.340 

(0.126) 

1.370 

(0.146) 

1.340 

(0.150) 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ  (se) 
3.561 

(0.163) 

3.451 

(0.146) 

3.569 

(0.163) 

3.451 

(0.189) 

4.163 

(0.228) 

4.096 

(0.266) 

4.138 

(0.228) 

4.096 

(0.252) 

IIδ  (se) 
2.730 

(0.119) 

2.619 

(0.147) 

2.660 

(0.118) 

2.619 

(0.135) 

3.215 

(0.191) 

3.104 

(0.251) 

3.123 

(0.191) 

3.104 

(0.214) 

IIIδ  (se) 
2.396 

(0.150) 

2.297 

(0.189) 

2.326 

(0.149) 

2.297 

(0.186) 

2.276 

(0.187) 

2.252 

(0.245) 

2.275 

(0.187) 

2.252 

(0.208) 

IVδ  (se) 
1.683 

(0.086) 

1.633 

(0.093) 

1.700 

(0.085) 

1.633 

(0.105) 

1.692 

(0.183) 

1.658 

(0.243) 

1.675 

(0.183) 

1.658 

(0.204) 

Vδ  (se) 
1.161 

(0.084) 

1.078 

(0.092) 

1.154 

(0.084) 

1.078 

(0.103) 

1.245 

(0.181) 

1.217 

(0.241) 

1.240 

(0.181) 

1.217 

(0.201) 

VIδ  (se) 
0.683 

(0.072) 

0.641 

(0.080) 

0.699 

(0.072) 

0.641 

(0.087) 

0.731 

(0.177) 

0.708 

(0.239) 

0.702 

(0.177) 

0.708 

(0.196) 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Deviance 86.11 77.12 75.58 - 47.71 33.69 34.77 - 

DF 29 29 29 - 29 29 29 - 
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Table 4 – Comparison of estimated standard errors for Clogg-Eliason estimator: 

Clogg-Eliason approach vs Jackknife method allowing for complex design 

 

Parameter 

Initial model Final model 

Clogg & 

Eliason 
Jackknife 

Clogg & 

Eliason 
Jackknife 

1β   0.086 0.102 0.083 0.096 

2β   0.106 0.130 0.102 0.122 

3β   0.079 0.090 0.076 0.086 

4β   0.070 0.078 0.061 0.068 

5β   0.073 0.081 0.067 0.074 

6β   0.049 0.055 0.048 0.054 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ   0.149 0.158 0.148 0.155 

2γ   0.170 0.204 0.167 0.201 

3γ   0.140 0.144 0.139 0.143 

4γ   0.148 0.152 0.147 0.149 

5γ   0.137 0.140 0.137 0.141 

6γ   0.146 0.147 0.146 0.148 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ   0.163 0.181 0.228 0.253 

IIδ  0.118 0.139 0.191 0.218 

IIIδ  0.149 0.192 0.187 0.212 

IVδ  0.085 0.101 0.183 0.207 

Vδ   0.084 0.099 0.181 0.204 

VIδ   0.072 0.084 0.177 0.200 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 
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