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Introduction

A cyclical behavior is a common characteristic of most hydrologic time series, and the literature
shows that long-range behavior can sometimes be expected (Hosking, 1984; Montanari et al., 1997,
2000; Bisognin and Lopes, 2007; Prass et al., 2011).

To model long memory behavior, Granger and Joyeux (1980) and Hosking (1981) introduced
the autoregressive fractionally integrated moving average (ARFIMA or FARIMA) model. To account
for the cyclical behavior, Porter-Hudak (1990) introduces the seasonal ARFIMA (SARFIMA) models.
The theoretical properties of SARFIMA processes as well as Monte Carlo simulation studies regarding
estimation and forecasting on these processes are presented in Bisognin and Lopes (2007, 2009 and
2011).

In this work we analyze the mean monthly water-level in the Paraguay River at Ladário and
the daily discharge time series for the Amazon River at Óbidos. While a complete SARFIMA model
is consider to model the time series of water-level, a harmonic model is used for the time series of
discharge.

Paraguay River at Ladário

The Paraguay River is a major river in South America, running through Brazil, Bolivia, Paraguay
and Argentina. It flows 2,621 kilometers from its headwaters in the Mato Grosso state (Brazil) to its
confluence with the Paraná River north of Corrientes (Argentina). More details on the characteristics
of the Paraguay River are given in Prass et al. (2011).

Figure 1 shows, respectively, the time series {Xt}nt=1 of the mean monthly water-level in the
Paraguay River at Ladário, in the period from January 1900 to March 2010 (a total of n = 1323
observations), its sample autocorrelation (for lags h = 0, · · · , 1000) and periodogram functions. The
decline in water-level over the extended period from 1960 to about 1975, which can be observed in
Figure 1, has never been fully explained, but is replicated in other time series of river flows from
other part of the la Plata drainage system. From the decay in the sample autocorrelation, from its
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cyclical behavior and from the peak in the periodogram function, it is evident the presence of seasonal
long-memory in this time series. The highest peak in the periodogram function corresponds to the
Fourier frequency λj = 2πj

1323 , with j = 110, which leads to the conclusion that s = n
j = 12.027 ≈ 12.

Figure 1: Time Series of the mean monthly water-levels in the Paraguay River at Ladário

in the period from January 1900 to March 2010 and its autocorrelation and periodogram

functions.
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The analysis of the sample autocorrelation and periodogram functions suggests considering a
SARFIMA(p, d, q) × (P,D,Q)s model, with seasonal period s = 12 (see the theoretical properties of
SARFIMA processes in Bisognin and Lopes, 2007, 2009, 2011). Thus, one has

φ(B)Φ(Bs)(1− B)d(1− Bs)D(Xt − µ) = θ(B)Θ(Bs)εt, for all t ∈ Z,

where µ ∈ R is the process mean; {εt}t∈Z is a white noise process with mean zero and variance σ2
ε ;

d and D are, respectively, the nonseasonal and seasonal differencing order parameters (allowed to
be fractional); s ∈ N∗ is the period of the seasonality; B is the backward shift operator defined by
Bsk(Xt) = Xt−sk, for all k, s ∈ N; (1 − B)d and (1 − Bs)D are, respectively, the nonseasonal and
the seasonal difference operators, defined through the expression (1 − Bs)D =

∑∞
k=0 δD,kBsk, with

δD,0 = 1 and δD,k = Γ(k+D)
Γ(−D)Γ(k+1) , for all k > 0, and the operator (1 − B)d is obtained when D = d

and s = 1; φ(·) and Φ(·) are, respectively, the nonseasonal and seasonal autoregressive polynomials,
θ(·) and Θ(·) are, respectively, the nonseasonal and seasonal moving average polynomials, defined by
φ(z) =

∑p
k=0(−φk) zk, θ(z) =

∑q
k=0 θk z

k, Φ(z) =
∑P

k=0(−Φk) zsk and Θ(z) =
∑Q

k=0 Θk z
sk, with

φ0 = −1 = Φ0 and θ0 = 1 = Θ0.

The model selection was performed as follows:

1. We use the first n = 1310 observations to fit the model and save the last 13 to compare with the
out-of sample forecasts.

2. We set µ̂ = X̄, where X̄ is the sample mean of {Xt}nt=1 and we consider all possible models with
p, q ∈ {0, · · · , 4} and P,Q ∈ {0, 1, 2}. Given the time series {Xt − µ̂}nt=1, the parameter estimation
is carried out by minimizing the function Q(·) (see Prass et al., 2011) which is an approximation of
the Gaussian maximum likelihood function in the spectral domain (see Beran, 1994). The spectral
density function of a complete SARFIMA process, as well as its asymptotic behavior near the
seasonal frequencies is given in Bisognin and Lopes (2009).

3. Once the model is estimated, the residuals {ε̂t}nt=1 are calculated based on the infinite order autore-
gressive representation of a SARFIMA process (see Prass et al., 2011). By letting X̂t := Xt − ε̂t,
for all t ∈ {1, · · · , n}, we obtained the fitted-values or in-sample forecast.

4. For each residuals time series {ε̂t}nt=1 we verify graphicaly the assumption of non-correlated residuals
by ploting the sample autocorrelation function. As measures of in-sample forecasting performance,
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we calculate the residuals mean absolute value (mae) and the mean absolute percentage error
(mape), defined as

mae =
1
n

n∑
t=1

|ε̂t| and mape =
1
n

n∑
t=1

|ε̂t|
|Xt|

, for all t ∈ {1, · · · , n}.

5. If more than one model presents uncorrelated residuals, we perform the out-of-sample forecast based
on those models. Expression for the h-step ahead forecast and its mean square error are given in
Bisognin and Lopes (2011). The forecasting performance is measured by calculating the mean
absolute error of forecast (maef ), defined as

maef =
1
np

np∑
h=1

|Xn+h − X̂n+h|,

where n is the forecasting origin, np = 1323− n is the total number of predicted values.

6. Among all the models with similar forecasting performances, we choose the more parsimonious one.

7. After selecting the final model, we also estimate the model parameters by considering other two
different sub-samples from the data. We fix the starting point as the first observation in the time
series and consider as ending points the values n1 = 721 and n2 = 913. These values correspond,
respectively, to January 1961 and January 1976 (Prass et al., 2011, consider the values n1 = 661
and n2 = 992). This analysis allow us to observe if the parameters of the model change in the
period from January 1961 to December 1975 and also, if the model is able to describe (or predict,
when n = 721) the time series behavior in this period.

Table 1 presents the estimated parameter values for two SARFIMA(p, d, q)× (P,D,Q)s models.
To calculate the p-values for the estimated parameters we consider their asymptotic distribution, which
is Gaussian. Since this distribution is well known and the p-values can be easily calculated, they are
not presented in Table 1. Although there is no previous indication that d = 0, we also consider this
possibility (Model 2) given that in our first analysis (Model 1) we found d+D > 0.5.

Tabel 1: Parameter estimation for the mean monthly water-level in the Paraguay River

at Ladário. The value in parenthesis corresponds to the standard error of the estimate.

n Model
Estimate

d̂ D̂ φ̂1 θ̂1 Φ̂1 µ̂ σ̂2
ε

721

1
0.2681 0.3566 0.7909 0.2703 -0.2473

264.1535 1412.1780
(0.1340) (0.0329) (0.0890) (0.0608) (0.0454)

2 -
0.3680 0.8962 0.3942 -0.2493

264.1535 1434.1800
(0.0324) (0.0175) (0.0359) (0.0454)

913

1
0.2152 0.3529 0.7982 0.3033 0.2299

243.3060 1450.1480
(0.1164) (0.0294) (0.0764) (0.0526) (0.0408)

2 -
0.3641 0.8922 0.3997 -0.2333

243.3060 1462.6980
(0.0290) (0.0159) (0.0319) (0.0407)

1310

1
0.2423 0.3957 0.7614 0.3480 0.2536

273.8886 1332.9840
(0.0960) (0.0244) (0.0702) (0.0391) (0.0335)

2 -
0.4118 0.8806 0.4387 -0.2561

273.8886 1348.0860
(0.0240) (0.0139) (0.0261) (0.0335)

By letting D(n) (equivalently, d(n), φ1(n), θ1(n) and Φ1(n)) be the parameter D (respectively,
d, φ1, θ1 and Φ1) corresponding to the SARFIMA model for {Xt}nt=1, for any n ∈ {721, 913, 1310}, the
results on Table 1 can be summarized as follows
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1. as expected, when the parameter d(n) is introduced in the model, the estimated values of φ1(n)
and θ1(n) decrease and the other estimates, including σ̂2

ε(n), remain almost the same as in the case
d(n) = 0.

2. the p-values of the estimates of d(n), for n ∈ {721, 913, 1310}, are, respectively, 0.0454, 0.0645 and
0.0116, which lead to the conclusion that d(n) 6= 0 at the 5% significance level.

3. the standard deviation σε(n) :=
√
σ2
ε(n) values, for all n ∈ {721, 913, 1310}, are close together.

4. for both models, the confidence intervals for η(n1) and η(n2), for any η ∈ {d,D, φ1, θ1,Φ1} and
n1, n2 ∈ {721, 913, 1310} is non-empty. Thus, one cannot reject the hypothesis that η(n) are all
statistically equal, for all n ∈ {721, 913, 1310} and any η ∈ {d,D, φ1, θ1,Φ1}.

Based on these findings, there is no statistical evidence that the model varies as n increases and the
same model could be used if only a few new observations are available.

Table 2 shows the descriptive statistics for the residual {ε̂t}nt=1 time series of the SARFIMA
models adjusted to the mean monthly water-level in the Paraguay River at Ladário, for all n ∈
{721, 913, 1310}. From this table one observes that, for each statistic considered there, the estimated
values remain almost the same, as n increases. One also observes that the sample mean is close to zero
and the residuals distribution is almost symmetric (see also the histograms in Figure 2). This result
shows that the hypothesis that {εt}t∈Z is a stationary process seems to hold. As expected, in both
cases, the mae decreases as the sample size increases. From the mae and mape values presented in
Table 2 one observes that both models seem to fit the data well. However, the mae values for Model
1 are slightly smaller than for Model 2. The graphs with the observed and the fitted values showed
that, for n ∈ {913, 1310}, both models capture the time series behavior in the period from January
1961 to December 1975 (these graphs are available upon request).

Tabel 2: Descriptive statistics for the residuals of the models adjusted to the mean

monthly water-level in the Paraguay River at Ladário.

n Model Min 1st Q Median Mean 3rd Q Max mae mape

721
1 -202.5549 -20.3621 -1.4125 0.1119 17.1150 252.0664 26.1346 0.2576

2 -200.4060 -20.2701 -2.3088 0.0703 16.8290 246.3375 26.7158 0.2552

913
1 -202.6292 -20.2652 -1.9036 -0.1618 16.6212 249.4995 26.0266 0.4168

2 -200.7576 -20.3567 -2.5577 -0.2341 15.5220 246.6846 26.4339 0.3988

1310
1 -209.9899 -18.6809 -2.3516 0.0748 15.4163 251.2380 24.5228 0.3071

2 -207.8147 -18.9811 -2.1124 0.1250 15.4565 248.1358 24.8991 0.2958

Figure 2 presents the time series {ε̂t}1310
t=1 corresponding to the residuals of Model 1 (the graphs

for Model 2 are almost identical and are available upon request). This figure also shows the sample
autocorrelation function ρ̂ε(·), for h ∈ {0, · · · , 200}, the histogram (in the same graph is also the kernel
density function) and the QQ-plot for the residuals time series. The graphs for n ∈ {721, 913} present
a similar behavior and are available upon request. The similarity between the graphs in Figure 2 and
the graphs for Model 2 is not a surprise, given that the values of the parameters φ1 and θ1 are smaller
when d 6= 0 than when d = 0. The sample autocorrelation function ρ̂ε(·) supports the hypothesis
that the {εt}t∈Z is a white noise process. The histogram and the QQ-plot show that the residuals
distribution is almost symmetric and clearly, it is not a Gaussian one. (Similar conclusion is achieved
for the other values of n).
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Figure 2: Residuals time series {ε̂t}1310
t=1 (Model 1), its sample autocorrelation function

ρ̂ε(h), with h ∈ {0, · · · , 200}, histogram (in the same graph is also the kernel density func-

tion) and QQ-plot.
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Figure 3 shows the graphs of the observed values X1310+h (in black) and the corresponding h-
step ahead forecast value (in red), for h ∈ {1, · · · , 13}, obtained from Model 1 and 2, respectively. The
graphs, considering the forecasting origin n ∈ {721, 913} are available upon request. For n ∈ {721, 913}
we observed that, as h increases, the predicted values converge to a curve that oscillates around the
mean. This fact was expected given the theoretical properties of the h-step ahead forecast, discussed
in Bisognin and Lopes (2011). Also, for n = 721, none of the models was able to predict the fall that
occurred in the period from January 1961 to December 1975. The maef values for n ∈ {721, 913, 1310}
are, respectively, 109.6520, 123.6648 and 33.775, for Model 1 and 109.2761, 121.6991 and 36.4261, for
Model 2. Thus, although the differences in the maef values are small, the Model 2 performed better
than Model 1, when n ∈ {721, 913}.

Figure 3: Observed values X1310+h (in black) and the corresponding h-step ahead forecast

value (in red), for h ∈ {1, · · · , 13}, obtained from Model 1 and 2, respectively.
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Amazon River at Óbidos

The Amazon is recognized as the world’s largest river by volume, but has generally been regarded
as second in length to the River Nile. The Amazon River has an average discharge greater than the next
seven largest rivers combined together (not including Madeira and Negro Rivers, which are tributaries
of the Amazon) and it accounts for approximately one-fifth of the world’s total river flow.

This section presents a comparison between deterministic and stochastic modelling of Amazo-
nian discharges. The goal in this work is to assess the prediction performance for each modelling
approach. While the stochastic approach only considers the historical time series of discharges, the
deterministic model describes the causative relationships between river discharge and precipitation
(rainfall), evaporation, and characteristics of soil, vegetation, topography and geology. Here, we con-
sider the time series of daily discharges for the Amazon River at Óbidos for the period January 1, 1998
to December 31, 2005 and in particular, the residuals given by the deterministic model MGB-IPH (for
a description of this model, see Collischonn et al., 2007 and 2008). This analysis is part of an ongoing
project and the stochastic model presented here is not our final model (yet to be determined).

Figure 4 presents, respectively, the Amazon discharges time series {Yt}nt=1, with n = 2922
observations, where t = 1 and t = n correspond, respectively, to January 1, 1998 and December 31,
2005 and its sample autocorrelation function (sample ACF). This graphs suggest that the time series
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presents a seasonal behavior with period s = 365 (one year). The slowly and steady decay of the
sample ACF indicates non-stationarity. This hypothesis is confirmed by the so-called Phillips-Perron
test, where we obtained the test statistic equals to -1.7992, with p-value = 0.6633.

Figure 4: Time series {Yt}2922
t=1 representing the Amazon River daily discharge in the

period from January 1, 1998 to December 31, 2005 and its sample autocorrelation func-

tion.
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The steps for model selection in the deterministic approach are as follows:

1. To fit the MGB-IPH model, the record of discharge is divided approximately into two halves. One
half is used for model calibration (not necessarily the first half of the observation), and the other half
for model verification. The model is fitted using the calibration data (i.e., the record of discharge,
together with the records of daily rainfall and evaporation for the same period). Parameters are
estimated by an iterative procedure analogous to the way in which genetic information is passed
between generations to improve fitness, and measures of goodness of fit are calculated for this
calibration period.

2. One of the most commonly used criteria for model selection is the Nash-Sutcliffe efficiency E, which
is analogous to a coefficient of determination, and it is given by

E = 1−
∑n

t=1(Xt − X̂t)2∑n
t=1(Xt − X̄)2

,

where n is the discharge record length. The closer E is to 1, the better the fit. Another measure of
goodness of fit which gives more weight to lower discharges is to calculate E using ln(Xt) instead
of Xt. The mean absolute error value (mae) is also used.

3. The true measure of the model’s ability to describe how a river basin responds to rainfall is obtained
from the data retained for model validation. Estimates of model parameters calculated using the
calibration data are now used to estimate the time series of river discharge, using records of rainfall
and evaporation for the validation period. Goodness-of-fit measures are again calculated and if (for
example) the Nash-Sutcliffe E is close to one for the validation period, the model is regarded as
very satisfactory.

Figure 5: Deterministic Analysis: at the left hand side the observed time series {Yt}2922
t=1

(in black) and the fitted values {Ŷt}2922
t=1 (in red) and at the right hand side the residuals

time series.
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Figure 5 shows, respectively, the graph of the observed time series {Yt}2922
t=1 (in black) and the

fitted values {Ŷt}2922
t=1 (in red) obtained from the MGB-IPH model and the residuals time series. From

this figure, the model seems to fit the data relatively well in the second half of the time series. However,
for the first half of the data (validation sample) the model does not present the same performance.
Moreover, one observes that the residuals for the first half of the data still present a seasonal behavior.
The mae and mape for the first half of the data are, respectively, 20913.95 and 0.1248. For the second
half of the data the mae and mape are, respectively, 7015.19. and 0.1139.

The steps in the stochastic modeling approach are as follows:

1. given the magnitude of the data, we consider a rescaled version of the original time series, given by
Xt = 10−3 × Yt, for all t ∈ {1, · · · , 2922}, where {Yt}2922

t=1 is the original time series.

2. The first 2981 values of the time series {Xt}2922
t=1 are used to fit the model and we save the last 31

values to assess the out-of sample performance of the selected model.

3. Non-stationarity is removed by applying the first difference operator (1 − B) to the time series
{Xt}nt=1. The resulting time series is denoted by {Ut}2981

t=2 . This time series, its sample autocorrela-
tion (ACF) and periodogram functions are presented in Figure 6. While the sample ACF indicates
a periodic behavior with at least two seasonal periods, the periodogram function shows high peaks
at several frequencies. Based on these facts a harmonic model seems more appropriated for this
data set.

Figure 6: Time series {Ut}2981
t=2 , where Ut = (1 − B)Xt and {Xt}2922

t=1 are the rescaled dis-

charges, its sample autocorrelation function at lags h = 0, · · · , 500 and the periodogram

function at the frequencies λj = 2πj/2980, for j = 1, · · · , 216.
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4. SARFIMA models do not fit the data well for any p, q ∈ {0, · · · , 4} and P,Q ∈ {0, 1, 2}. Therefore,
we consider only harmonic models, given by

(1) Ut = µ+
m∑
k=1

[Ak cos(ωkt) +Bk sin(ωkt)] + εt, for all t ∈ Z,

where {εt}t∈Z is a white noise process. These processes and the optimization procedure to adjust
this model is described with details in Bloomfield (1976).

5. We start the model selection by setting m as the number of frequencies λj for which In(λj) > 0.2,
where In(·) is the periodogram function. We also set those values of λj as starting values of ωk,
for k = 1, · · · ,m, in the optimization algorithm. We increase the number of frequencies in the
model until we obtain non-correlated residuals. The final model is composed by m = 62 frequencies
(the table with the coefficients for the final model is available upon request). The authors are still
working in a method to detect which coefficients can be eliminated from this model to make it more
realistic.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS090) p.1407



6. The fitted values {X̂t}2981
t=2 and the residuals {ε̂t}2981

t=2 are obtained through expression (1) upon
replacing the model parameters by their estimated values. The fitted-values are then rescaled to have
the same magnitude as the original data. The resulting time series is denoted by {Ŷt}2981

t=2 . Figure
7 shows, respectively, the observed (in black) and the fitted values (in red) and the residuals time
series, histogram (and kernel density function), sample autocorrelation and periodogram functions.
From these graphs one concludes that the model seems to fit the data well. Moreover, the residuals
seem to satisfy the model’s assumption and, although the distribution of the residuals seems to be
symmetric, it is not Gaussian.

Figure 7: Stochastic Analysis: observed time series {Yt}2891
t=1 (in black) and the fitted val-

ues {Ŷt}2891
t=1 (in red) and the residuals time series, histogram (and kernel density func-

tion), sample autocorrelation function and periodogram function.
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7. The h-step ahead forecast is obtained through expression (1) upon replacing the model parameters
by their estimated values and by setting ε2981+h = 0, for h ∈ {1, · · · , 31}. The final values are
then rescaled to have the same magnitude as the original data. Figure 8 presents the h-step ahead
forecast for h = 1, · · · , 31, obtained from the harmonic model. The maef for this model is 8379.452
and the mean percentage error of prediction is 0.0698.

Figure 8: Graphs of the h-step ahead forecast {Ŷt+h}31
h=1, for t = 2981 (in red) and the

observed values {Yt+h}31
t=1 (in black).
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Conclusions

Here we consider a stochastic model that allows for long memory and periodic behavior for
the time series of water-level at a gauging site on the Paraguay River, a major tributary of the la
Plata drainage system. We also present a comparison between deterministic and stochastic modelling
of Amazonian discharges. This analysis is part of an ongoing project and our goal is to assess the
prediction performance for each modelling approach. While the stochastic approach only considers the
historical time series of discharge, the deterministic model describes how river discharge is determined
by precipitation, evaporation and drainage basin characteristics of soil, geology and vegetation.

For the time series of water-level we compare two SARFIMA models. While in Model 1 the
parameter d was estimated (we found d 6= 0 at a 5% significance level), in Model 2 we fixed d = 0.
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Different sample sizes were considered to test if the coefficients of the model remain the same over the
time. We found no evidence that the parameters change as the sample size increases. In-sample and
out-of-sample forecasting performances of both, Model 1 and Model 2, were very similar and there is
not enough evidence to decide which model is better.

A harmonic model was considered for the time series of Amazonian discharges. Given the
high number of frequencies (62 frequencies) needed to provide a good fit (in terms of uncorrelated
residuals), we conclude that further investigation is needed and perhaps a new class of models have
to be considered. The deterministic model seems to provide a good fit to the data, in terms of mean
absolute error. However, the residuals of this model still present a seasonal behavior. Thus, our next
step is to consider a stochastic model for the residuals time series.
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RÉSUMÉ (ABSTRACT)

Although the Nile is the world’s longest river, the Amazon has the highest mean discharge. Here
we present a comparison between deterministic and stochastic modelling of Amazonian discharges.
The goal in this work is to assess the prediction performance for each modelling approach. While
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the stochastic approach only considers the historical time series of discharge, the deterministic model
describes how river discharge is determined by precipitation, evaporation and drainage basin charac-
teristics of soil, geology and vegetation. A stochastic model that allows for long memory and periodic
behavior is also explored for water-level at a gauging site on the Paraguay River, a major tributary of
the la Plata drainage system.

Keywords: Stochastic and deterministic models, long-memory, seasonality.
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