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Introduction: Digital Sky Surveys, Virtual Observatories and Anomaly Detection

Survey astronomy consists in observing light emitting sources and recording these measurements

in data catalogues. Sources are observed by telescopes which can be ground-based, air-borne or in

orbit around the Earth or the Sun. Though some of these telescopes record data over the full light

spectrum, for cost and time reasons most telescopes only record certain filter passbands, i.e. measure

the total flux received over specific spectrum intervals. Depending on the purpose of a given survey, it

can be designed to record flux in Gamma-ray, X-ray, ultraviolet, optical, infrared, microwave or radio

passbands. For ground-based telescopes only optical, infrared and radio passbands can be measured

as the light emitted by a source in all other parts of the spectrum is absorbed by the atmosphere.

The number of completed or ongoing surveys is very large, and the surveys differ widely in

regions of the sky that are mapped, the filter passbands used, the detection limits (survey depth) etc.

This is due to different science aims of the different surveys.

But this also means that many surveys overlap, i.e. a given source can be observed in different

surveys, depending on which region in the sky it lies, how bright it is and in which parts of the light

spectrum it radiates.

This overlap can be exploited by Virtual Observatories (VO), which are simply collections

of surveys (with a dedicated web access). The surveys within a VO can be cross-matched (using

the objects’ coordinates on the sky (typically given in right ascension (ra) and declination (dec))).

There are several VOs, a few examples being AstroGrid (also known as the UK Virtual Observatory;

http://www.astrogrid.org/), the US National Virtual Observatory (NVO; http://www.us-vo.org/),

Euro-VO (http://www.euro-vo.org).

Anomaly Detection is concerned with finding observations which appear to be inconsistent with

the remainder of that set of data (Barnett and Lewis, 1994). More specifically an anomaly can be

defined as an observation which deviates so much from other observations as to arouse suspicions that
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it was generated by a different mechanism (Hawkins, 1980). Historically the aim was to remove such

datapoints (also called outliers) from datasets as they can severely impact the statistical analysis of

datasets with outliers. But anomalies can be interesting in themselves as, for example, an anomaly

in a credit card dataset can be an indication of credit card fraud. In astronomy an anomaly can be

a rare (e.g. quasars, brown dwarfs...) or even an unknown type of object. Finding such objects (and

then studying them more closely with follow-up observations) can help to test cosmological models.

Problem Description and Motivation

Our aim is to detect anomalies in data from cross-matched digital sky surveys. There are several

challenges that need to be addressed.

Surveys in themselves can be large and high-dimensional (thousands to hundreds of millions of

objects; a handful to hundreds of variables). Hence a database compiled by cross-matching surveys

from a VO will be large and high dimensional

This is both a curse and a blessing: a curse because of i) computational and methodological

issues, ii) the fact that data in high dimensional spaces are sparse (curse of dimensionality); a blessing

because the more variables that are recorded for each data point, the more information about source

populations we have.

Another property of cross-matched catalogues is that they contain many missing values. Differ-

ent objects will be observed in different surveys: a given object might have been observed in surveys

A, B and C, but not in surveys D and E, while another source is observed in C and E but not A, B and

D. Furthermore within each survey there can be missing values as the different bands have different

sensitivities and thus not all bands will detect a faint source. However there is a certain structure

in the missing detections: if an object is detected in a given survey, it will usually have detections

in all bands in that survey (an exception being faint objects near the survey bands’ detection lim-

its), whereas it will have all detections missing for a survey in which it has not been observed. This

non-totally-at-random missing values structure can be exploited to ease certain methodological and

computational issues.

Thus we will have to develop an anomaly detection method which is fast enough to work with

large, high-dimensional data, which can handle missing values and which allows a direct comparison

of objects with different sets of observed variables.

The method we propose below essentially reduces the problem of working in a high-dimensional

space to working in many lower-dimensional subspaces. While the reasons for taking this approach

are given by the problem above, the specific reasons for working in lower-dimensional data subspaces

are four-fold:

- data in high-dimensional spaces are sparse (e.g. Aggarwal et al. (2001)) and hence the local

density around every object is low. As a result the very concept of what is an anomaly makes

less sense in higher dimensions.

- unless there is a relationship between all the variables in a dataset, anomalies are apparent in

subspaces of the data. The more variables there are, the more complex such a relationship

will have to be. Also, the more variables are (automatically) collected, the higher the chances

of some being independent of each other. For these two reasons, we think, such a complex

relationship is increasingly unlikely as the dimensionality increases. Fig. 1 illustrates this point

in a two-dimensional setting.

- anomalies might be anomalous in only a subset of variables. In a full-dimensional approach

the anomaly score of such anomalies will be less extreme because of the contributions from the
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variables the anomalies are not anomalous in, and thus these anomalies can go undetected. A

lower-dimensional approach might be able to overcome this.

- a lower-dimensional approach will allow us to deal efficiently and rigorously with missing values:

as we can restrict ourselves to the variables in which a particular object has been observed

in, there will be no need for imputing missing data, nor will there be information lost due to

discarding objects with missing values
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Figure 1: Simple examples of anomalies (red crosses); in figures (a) and (b) there is a relationship

between x1 and x2 and we can only spot the anomaly by looking at the two-dimensional space, in

figure (c) there is no such relationship and we can spot the anomaly by considering x2 alone.

Proposed Approach: Combining Anomaly Scores from Observed Subspaces

The proposed method to address the anomaly detection problem in datasets obtained by cross-

matching astronomical surveys can be summarised in a few easy steps. The main idea consists in

looking for anomalies not over the full-dimensional datasets, but in lower-dimensional subspaces of

the data. For computational reasons (for this work we want to avoid having to compute some set of

‘best’ subspaces), we will limit ourselves to the subspaces given by subsets of the data variables.

Our approach is summarised by Algorithm 1, but let us first define some notation:

n - the number of objects (rows) in the dataset

d - the number of variables (columns) of the dataset

D - the maximum dimensionality of the subspaces (1 ≤ D ≤ d)

AS - anomaly score (we assume the more anomalous an object is, the higher its AS)

MV - missing value

Our method is not a novel AS computation algorithm, but attempts to use an AS calculator

designed for low-dimensional data on high-dimensional data whilst avoiding the curse of dimensionality.

In practice, any AS computation algorithm can be used with our approach. For this work we have

used the Local Outlier Factor (LOF; Breunig et al. (2000)).

LOF generalises distance-based outliers (DB-outliers), introduced by Knorr et al. (2000). The

DB-outliers technique computes the number of neighbours within a certain radius of a given object.

If that number is less than a threshold, the object is flagged as anomalous. Alternatively the inverse

of the number of neighbours within a chosen radius of an object can be used as AS. LOF looks at the

local density around an object. The LOF score is essentially the average of the ratios of the average

distance to the k nearest neighbours of the k nearest neighbours of a given object and the average

distance to the k nearest neighbours of this object (though there is some smoothing for small distances

involved as well). Connectivity-based Outlier Factor (COF; Tang et al. (2001)) improves on LOF by

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS004) p.2033



Algorithm 1 Proposed approach
1. for i in 1 : D

2. for j in 1 :
(

d

i

)

3. compute AS for objects with no MVs in jth i-dimensional subspace

4. store the AS vector for this subspace

5. end for j

6. combine the AS vectors for all i-dimensional subspaces

7. end for i

8. output D AS vectors or D lists of anomaly candidates

computing the neighbourhood set of a given object in an incremental fashion. While this improves

LOF, it is also much more computation-intensive and seems to outperform LOF only on contrived

datasets (such as straight lines). Since LOF is much more widely used and studied than COF, we have

used it with our method for this work. Local Density Factor (LDF; Latecki et al. (2007)) is very similar

to LOF, but uses kernel density functions to compute density estimates, rather than just distances

to nearest neighbours. LDF can outperform LOF, but does so at the cost of an extra parameter: in

addition to the number of nearest neighbours (also used by LOF and COF), the bandwidth used with

the kernel functions needs to be set as well. In practice, it can prove difficult to set this parameter

and since our method will involve computing anomaly scores across many subspaces for which there

might not be one best parameter, we have preferred to use LOF with our algorithm. LOF, COF and

LDF are density-based anomaly detection methods and, as such, compute distances between objects.

As distances between objects with missing values are not well-defined, these methods cannot be used

(at least without modification) on data with missing values.

The key step in our approach is step 6 in algorithm 1 above. It is by – sensibly – combining, for

each object, the AS of the subspaces the object has been observed in, that we can directly compare

the anomalousness of objects with different sets of observed variables. If one were to, say, sum all the

AS from the observed subspaces then objects with many observed variables are more likely to have

high AS than objects with few observed variables and objects are not directly comparable. Hence we

need to impose restrictions on what constitutes a valid combination function.

We will use the following notation:

dD =
(

d
D

)

, the number of subspaces of dimension D in a d-dimensional dataset

X = (ASi,j) 1≤i≤n
1≤j≤dD

, a matrix of AS, with ASij ∈ R ∪ {NA}, Xi the ith row of X

G = {X |X an n × dD AS matrix}, the set of all n × d AS matrices

We define a combination function to be a function ρ : G → (R ∪ {NA})n which satisfies properties

1 and 2 below. If, in addition, a combination function satisfies properties 3-6 below, it is termed well-

behaved.

Let F be the set of all combination functions and let ρ ∈ F .

Property 1 (Putting objects with different numbers of missing values on the same scale)

Let x0 ∈ R be a constant. Let G0 = {X ∈ G | ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , dD}, Xi,j ∈ {x0, NA}}.

Then ∃ c ∈ R so that ∀X ∈ G0, ∀i ∈ {1, . . . , n}, ρi(X) =

{

c if ∃ j ∈ {1, . . . , dD} so that Xi,j = x0

NA otherwise
.
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This property guarantees that objects with many missing values have combined AS on the

same scale as objects with few missing values and thus that objects with different sets of observed

variables are directly comparable through their combined AS. For example, if we were to combine AS

by summing all the non-missing AS for each object, then an object with, say, 5 non-missing AS will

automatically have a much larger AS than an object with only 1 non-missing AS. This needs to be

avoided and therefore property 1 is needed.

Property 2 (No non-missing combined AS for objects with at least one non-missing AS)

∀X, Y ∈ G so that ∀i, j ∈ {1, . . . , n} Xi,j = NA ⇔ Yi,j = NA

then ∀i ∈ {1, . . . , n}ρi(X) = NA ⇔ ρi(Y ) = NA

This property means an object has a missing combined AS if and only if all of its subspace-

specific AS are missing and thus guarantees that each object which has at least one non-missing AS,

also has a non-missing combined AS.

Property 3 (AS inequality for comparable objects)

∀X ∈ G, ∀ i1, i2 ∈ {1, . . . , n} so that
{

Xi1,j ≤ Xi2,j ∀j ∈ {k | k ∈ {1, . . . , dD} and Xi1,k 6= NA, Xi2,k 6= NA}

Xi1,j = Xi2,j = NA ∀j ∈ {k | k ∈ {1, . . . , dD} and Xi1,k = Xi2,k = NA}

we have that

ρi1(X) ≤ ρi2(X).

This property simply means that if an object’s AS are each less than or equal to those of another

object, then its combined AS should be less than or equal to that other object’s combined AS.

Property 4 (Effect on the AS of other objects)

∀X, X̃ ∈ G so that ∃(i0, j0) ∈ {1, . . . , n} × {1, . . . , dD}
{

Xi,j = X̃i,j ∀(i, j) ∈ {1, . . . , n} × {1, . . . , dD} \ {(i0, j0)}

Xi0,j0 ≤ X̃i0,j0

we have that
{

ρi(X) ≥ ρi(X̃) ∀i ∈ {1, . . . , n} \ {i0}

ρi0(X) ≤ ρi0(X̃)
.

This property means that if we change an AS matrix so that we only change one object’s AS, in

particular by increasing one of its AS (i.e. by making that object more anomalous in one subspace),

then the combined AS for all other objects should remain unchanged or decrease (i.e. stay equally

anomalous or become less anomalous) whereas, obviously, the combined AS for the object in question

increases.

Property 5 (Preservation of order)

Let f : R → R be a monotonically increasing function, and let f(X) = (f (Xi,j)) 1≤i≤n
1≤j≤dD

∀X ∈ G.

Then

ρi(X) ≤ ρj(X) ⇒ ρi(f(X)) ≤ ρj(f(X)).

This property simply guarantees preservation of ranks of anomalousness.
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Property 6 (Continuity)

For every choice of elements of an AS matrix that are missing, ρ is continuous on the non-missing

components.

Combination functions which satisfy property 6 will be called continuous.

Examples of combination functions

Let Si = {Xi,j |j ∈ {1, . . . , dD} and Xi,j 6= NA}, i = 1, . . . , n.

- Selecting the highest AS:

ρ(ext)
i(X) = max{Xi,j |Xi,j ∈ Si} ∀i ∈ {1, . . . , n}.

- Averaging the AS:

ρ(avg)
i(X) =

∑

Xi,j∈Si

Xi,j/|Si| ∀i ∈ {1, . . . , n}.

- Averaging the top N AS:

ρ(topN)
i(X) =

N−1
∑

j=0

Xi,(|Si|−j)/N ∀i ∈ {1, . . . , n}

where Xi,(j) is the jth order statistic of the AS scores of object i. (N.B. if an object has less

than N AS, the combined AS is the average of all the available AS.)

- Sum of the excess above a certain quantile:

For each j ∈ 1, . . . , dD let q
(1−α)
j be the (1 − α) quantile of the AS recorded for subspace j. For

all j, we subtract q
(1−α)
j from the AS for that subspace. Finally, for each object, we sum the

non-negative values.

ρ(topquant)
i(X) =

∑

j∈Si

(

Xi,j − q
(1−α)
j

)

I
(

Xi,j ≥ q
(1−α)
j

)

∀i ∈ {1, . . . , n}

where I(.) is the indicator function.

- Sum of the excess above a certain quantile and below another one:

We choose 0 ≤ α2 < α1 ≤ 1 and compute, for each j, q
(1−α1)
j and q

(1−α2)
j . For all j, we set all

those AS exceeding q
(1−α2)
j equal to q

(1−α2)
j and then subtract the amount by which they exceed

q
(1−α2)
j , i.e. for all i so that Xi,j > q

(1−α2)
j we set Xi,j = q

(1−α2)
j − (Xi,j − q

(1−α2)
j ). Then, for

all j, we subtract q
(1−α)
j from all the AS for that subspace. Finally, for each object, we sum the

non-negative values.

ρ(midquant)
i(X) =

∑

j∈Si

[(

Xi,j − q
(1−α1)
j

)

I
(

q
(1−α1)
j ≤ Xi,j ≤ q

(1−α2)
j

)

+
(

2q
(1−α2)
j − Xi,j − q

(1−α1)
j

)

I
(

Xi,j > q
(1−α2)
j and Xi,j ≤ q

(1−α2)
j − q

(1−α1)
j

)]

∀i ∈ {1, . . . , n}.
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Figure 2: Examples of combination functions; the axes represent two different AS and the colour

scale indicates the magnitude of the combined AS.

All of the above are valid combination functions (ρ(ext), ρ(avg), ρ(topN) satisfy property 1 with

c = x0 and ρ(topquant) and ρ(midquant) with c = 0 and property 2 is obviously met). The first four

are also well-behaved. ρ(midquant) is not well-behaved as it does not satisfy properties 3, 4 and 5.

It is, however, continuous. If we had not subtracted the quantiles q
(1−α)
j , q

(1−α1)
j for the last two

combination functions respectively, they would not have been continuous; idem if we had simply set

the AS above the second quantile equal to zero for ρ(midquant).

As we have already explained, property 1 needs to be met to guarantee comparability of the

combined AS and property 2 guarantees non-missing combined AS for objects with at least one non-

missing AS. Properties 3-5 intuitively appear desirable. And indeed they would be if there would only

be ordinary objects and anomalies in a dataset. However, in practice, it is often the case that there are

spurious objects (e.g. cosmic rays in astronomical datasets) or objects badly affected by observational

noise (e.g. sources near large stars which get affected by diffraction spikes). Such noise objects have

often very extreme measurements and result in very high anomaly scores. Although they do not

satisfy properties 3-5, combination functions such as ρ(midquant) above allow one to effectively discard

AS which are too extreme and focus on sources with consistently high but not extreme AS. Property 5

is usually desirable. For example, choosing the quantiles for ρ(topquant) and ρ(midquant) is an arbitrary

process. Having soft thresholds (i.e. continuous combination functions) moderates the arbitrariness

of such choices. But if there is a specific reason why a hard threshold might be appropriate for a

combination function for a particular dataset, then property 6 would not be needed.
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Results

This is still work in progress and, as a result, we will limit ourselves to giving a preview of

how our method works in practice. The presentation at the conference will contain a more detailed

performance assessment of our method and feature results from astronomy data.

Performance on simulated data

We compare our method to LOF and LDF on different sets of simulated data with no MVs.

LDF with Mahalanobis distance proved to be computationally prohibitive for running large numbers

of simulations, and so we have used LDF with Euclidean distance only. As our method involves

computing
(

d
D

)

AS vectors (whereas LOF and LDF, when applied directly to the d-dimensional data

have to compute just one such vector), it is slower than both LOF and LDF (with Euclidean distance),

even though the distances it has to compute are in lower-dimensional spaces. However, LOF and LDF

do not work on data with MVs, whereas our method does.

For assessing the performance of the different anomaly detection techniques, we will use the

receiver operating characteristic (ROC) curve and the true positive rate (or sensitivity). For the latter

we will rank the AS and flag the objects with the highest scores as anomalous.

Dataset 1 consists of 15′188 objects with 188 anomalies. The data are sampled from a mul-

tivariate normal distribution and the variables are pair-wise linearly correlated. The anomalies are

anomalous in only 3 out of 35 variables. For the anomalies, these variables are not correlated with

any of the other variables. Figure 3 shows that all three anomaly detection methods struggle with this

type of data, but using ρ(ext) as combination function our method is able to outperform both LOF

and LDF.

Dataset 2 consists of 10′100, 60-dimensional data points with 100 anomalies. The normal data

points are sampled from two distinct multivariate normal distributions and the anomalies do not lie

in any of these two clusters of data points. For this data, our method is outperformed by both LOF

and LDF as shown on Figure 4.

Dataset 3 consists of 25′250, 20-dimensional data with 250 anomalies. The data points form

again two distinct clusters, but this time the anomalies are anomalous in only half of the variables

and there are three types of anomalies. The first type of anomalies (83 data points) lie in one of the

two clusters of data, but have larger variances. The second type of anomalies (83 data points) do

not lie in any of the two clusters. Finally, the third group of anomalies (84 data points) form a small

cluster on their own, distinct from the other two clusters. Figure 5 shows the true positive rate for this

dataset and also how the true positive rate varies with the sample size (keeping the number of nearest

neighbours and the proportion of anomalies fixed). The three anomaly detection methods perform

similarly well when the number of nearest neighbours (here fixed to 75) is greater than the number

of anomalies that form a small cluster. However when there are more anomalies in that cluster than

the number of nearest neighbours used, then our method outperforms LOF and LDF as it is able to

better detect these anomalies.

Results from cross-matched SDSS-UKIDSS data

We are currently applying our method to data cross-matched from the Sloan Digital Sky Survey

(SDSS; York et al. (2000)) and the Large Area Survey (LAS) from the United Kingdom Infrared

Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS; Lawrence et al. (2007)). SDSS observes

data in the optical filters u, g, r, i and z, whereas UKIDSS LAS observes data in the near-infrared

bands Y , J , H and K. We use colour (u − g, g − r, r − i, i − z, z − Y , Y − J , J − H, H − K) and

morphology (concentrations in the five SDSS filters and the ClassStat variables in the four UKIDSS

LAS filters) variables as input variables for our anomaly detection method. We are not using any
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Figure 3: Sensitivity (left) and ROC curve (right) for our method, LOF and LDF for dataset 1.

Anomalies are anomalous in 3 of 35 variables.
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Figure 4: Sensitivity for our method, LOF and LDF for dataset 2. Anomalies do not lie in any of

the two clusters of normal data points.
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Figure 5: The left-hand-side figure shows the sensitivity for our method, LOF and LDF for dataset

3. The right-hand-side figure shows the results for different sample sizes. There are three different

types of anomalies. The number of nearest neighbours used with all three methods is fixed to 75.
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magnitude variables directly as in that case most bright sources would have high AS simply because

there are few bright sources.

Results from these data will be presented at the conference.
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ABSTRACT (RÉSUMÉ)

Modern astronomical surveys, in particular cross-matched databases from virtual observatories,

are very large datasets (hundred of thousands to millions and even billions of objects), which are high-

dimensional (from a dozen variables up to a few hundred) and which often contain large numbers

of missing values (due to sources emitting light at different wavelengths and faint sources not being

detected in all filter passbands). The objects most interesting for astronomers are typically very rare,

very faint and have one or several features that set them apart from the other sources in the survey.

Indeed common stars and galaxies are fairly well-understood and it are objects right at the detection

limits of the different surveys or objects that have peculiar astrophysical properties which drive much

of the astrophysical research. Therefore anomaly detection tools are vital for finding such potential

interesting sources. However the size of the datasets involved, the high dimensionality and above all

the large numbers of missing values present severe challenges to existing anomaly detection methods.

We propose a novel approach which works by computing, for each object, anomaly scores in lower

dimensional subspaces and then combining these scores to a unique score for each source. Working in

subspaces allows us to work around the curse of dimensionality and deal very intuitively with missing

values. As a result our method allows direct comparisons of sources, even if they have been observed in

quite different sets of variables. We will discuss several ways of combining anomaly scores and look at

various properties of our approach. The proposed approach is very flexible and can be used with most

anomaly score computation methods.
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