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1. Introduction
Designs of original two-stage and multi-stage sampling methodologies and their

practical implementations in large-scale sample surveys date back to Mahalanobis’s

(1940) pioneering research. The broad area of multi-stage and sequential estimation

problems may be reviewed from Sen (1981), Woodroofe (1982), Siegmund (1985),

Mukhopadhyay and Solanky (1994), Ghosh and Sen (1990), Ghosh et al. (1997),

Mukhopadhyay et al. (2004), and Mukhopadhyay and de Silva (2009) among other

sources.

Let us begin by assuming availability of a sequence X1, X2, ... of independent

observations following a normal distribution with unknown mean µ and unknown

variance σ2,−∞ < µ <∞, 0 < σ <∞. Having recorded X1, ..., Xn, let us denote the

customary estimators:

Sample Mean: Xn = n−1Σni=1Xi

Sample Variance: S2n = (n− 1)−1Σni=1(Xi −Xn)
2, n ≥ 2.

(1.1)

Had σ2 being known, the optimal fixed sample size needed to have a preassigned

fixed-width (= 2d) confidence interval centered at the sample mean would be C ≡
a2σ2/d2 where d(> 0) is half-length of the confidence interval and a is the upper 50α%

point of N(0, 1). But σ2 is unknown, and so one would customarily estimate C using

the sample variance.

Stein’s (1945,1949) fundamental two-stage procedure for constructing a fixed-

width confidence interval for µ involved S2m obtained from pilot observationsX1, ..., Xm

with the pilot size m(≥ 2) and a replaced with tm−1,α/2. One may also refer to Cox

(1952). Mukhopadhyay (1982) opened the possibility of incorporating less traditional

estimators of σ2.

In this note, we focus on estimating σ2 by a statistic U2
m defined via mean absolute

deviation (MAD), range, and Gini’s mean difference. Obviously, then, tm−1,α/2 must

be replaced by the upper 50α% point corresponding to a pivotal distribution of the

sample mean standardized by Um. For brevity, let us state specifically some of such
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estimators :

Sample Var: S2n σ̂2 ≡ U
(1)2
n = S2n

MAD: Mn = n−1Σni=1
∣∣Xi −Xn

∣∣ σ̂2 ≡ U
(2)2
n =M2

n/c
(2)2
n

Gini: Gn =
(
n
2

)−1
ΣΣ

1≤i<j≤n
|Xi −Xj| σ̂2 ≡ U

(3)2
n = G2

n/c
(3)2
n

Range: Rn = Xn:n −Xn:1 σ̂2 ≡ U
(4)2
n = R2

n/c
(4)2
n

(1.2)

where Xn:i is the ith order statistic from X1, ...,Xn and

c
(2)
n =

{(
π
2
+ sin−1

(
1
n−1

)
− n+

√
n(n− 2)

)
2(n−1)
n2π

+ 2(n−1)
πn

}1/2
,

c
(3)
n =

{
4

πn(n−1)

(
π
3
(n+ 1) + 2(n− 2)

√
3 + n2 − 5n+ 6

)}1/2
,

c
(4)
n =

{
n(n− 1)

∫∞
0

w2
(∫∞

−∞
[Φ(x+ w)−Φ(x)]m−2φ(x)φ(x+ w)dx

)
dw
}1/2

,

(1.3)

where φ(x) = (2π)−1/2 exp (−x2/2) ,Φ(x) =
∫ x
−∞

φ(y)dy,−∞ < x < ∞. One may

note that the expressions c
(2)
n , c

(3)
n , c

(4)
n given in (1.3) can be found in Herrey (1965),

Nair (1936), and Owen (1962, p. 140) respectively among other sources.

Observe that U
(i)2
n , i = 1, 2, 3, 4, are unbiased estimators of σ2. Even though U

(1)2
n

is the best unbiased estimator of σ2, many authors have alternatively incorporated

U (i)2
n , i = 2, 3, 4, instead of U (1)2

n and explored their roles in the context of both

estimation and tests of hypotheses. Confidence intervals based on Mn are useful

in experimental physics (Herrey, 1965). As a measure of deviation, Rn is widely

used in quality control and for on-line positioning user service utility reports where

the positioning (geodetic latitude, logitude and elevation/height) data are assumed

normally distributed. Lord (1947) discussed the role of the statistic
√
n(Xn− µ)/Rn

as a possible competitor to Student’s t test.

Yet another unbiased estimator of the population standard deviation that is a

suitable multiple of Gn was originally developed by Gini (1914,1921). Nair (1936)

constitutes one of the early contributions which discussed the role of Gn in esti-

mation theory for a normal distribution as well as some other selected non-normal

distributions. Both Downton (1966) and D’Agostino (1970) worked with an ordered

version of Gn and came up with estimates of population standard deviation in a nor-

mal distribution. Barnett et al. (1967) discussed the role of
√
n(Xn − µ)/Gn as a

possible competitor to Student’s t test and argued that these tests are nearly equally

powerful. Further explorations are immensely valuable in order to guide practical

users especially when one could reasonably expect some outlying observations even

though the observations follow a normal distribution.

Thus, we explore the role of Mukhopadhyay’s (1982) two-stage confidence inter-

val procedure when the requisite sample size is determined through U (i)2
n , i = 2, 3, 4,

along with associated exact and first-order properties. Next, we revisit Mukhopad-

hyay and Duggan’s (1997) updated two-stage methodology that was proposed when a

known positive lower bound σ2L was available for σ
2 in the present light with hints of

associated exact, first-order and second-order properties. We supplement this ongo-
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ing methodological research with data analyses. Some details are indicated, though

briefly, in the sections that follow.

2. Formulation
Following the generalization of the Stein (1945,1949) procedure by Mukhopadhyay

(1982), a fixed-width confidence interval for µ can be determined by exploiting the

pivotal distribution of the random variableW
(i)
m =

√
n(Xn−µ)/U

(i)
m , i = 1, 2, 3, 4, for

any n ≥ m. Note that the distribution of W
(i)
m , does not involve either n or σ2. So,

let us determine b
(i)2
m;α in such way that

P
{∣∣W (i)

m

∣∣ ≤ b(i)m,α
}
= 1− α, i = 1, 2, 3, 4, (2.1)

where m(≥ 2) happens to be the fixed pilot sample size.
Now, based on the pilot data X1, ..., Xm,m ≥ 2, one would determine the final

sample size as

N (i) ≡ N (i)(d) = max
{
m,
〈
b
(i)2
m,αU

(i)2
m /d2

〉
+ 1
}
, i = 1, 2, 3, 4, (2.2)

where < w > denotes the largest integer < w with w > 0.

If N (i) = m, no more observations are recorded beyond the pilot set, but if N (i) >

m, then we would recordN (i)−m additional observations in the second stage. Finally,

based on the combined data X1, ..., XN(i) from both stages, one would propose the

fixed-width confidence interval

I
(i)

N(i) =
[
XN(i) ± d

]
(2.3)

for µ, i = 1, 2, 3, 4.

We must emphasize that Stein’s (1945,1949) two-stage procedure developed the

final sample size N (1) and the associated fixed-width confidence interval I
(1)

N(1) for µ.

Obviously, in this case, one has W
(1)
m ∼ tm−1 and hence replace b

(1)
m,α with tm−1,α/2.

3. Properties of Competing Confidence Intervals
Now, for the two-stage procedure (2.2)-(2.3), we summarize the following set of

both exact and first-order asymptotic results.

Theorem 3.1. For the two-stage fixed-width confidence interval estimation strategy(
N (i), I

(i)

N(i)

)
from (2.2)-(2.3), for all fixed (µ, σ) ∈ 
× 
+, α ∈ (0, 1), we have:

(i) Pµ,σ
{
µ ∈ I

(i)

N(i)

}
≥ 1− α , for fixed all fixed d [Exact Consistency];

(ii) Eµ,σ
[
N (i)/C

]
→
(
b
(i)
m,α/a

)2
as d→ 0;

(iii) Pµ,σ
{
µ ∈ I

(i)

N(i)

}
→ 1− α as d→ 0 [Asymptotic Consistency];

with C = a2σ2/d2, i = 1, 2, 3, 4.

Proof : From (2.2), we may write down the following basic inequality:

b
(i)2
m,αU

(i)2
m d−2 ≤ N (i) ≤ m+ b

(i)2
m,αU

(i)2
m d−2, w.p.1, i = 1, 2, 3, 4. (3.1)
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Next, following Mukhopadhyay (1982), we may write down:

Pµ,σ
{
µ ∈ I

(i)

N(i)

}

= Pµ,σ
{∣∣XN(i) − µ

∣∣ ≤ d
}

= Pµ,σ

{√
N (i)

∣∣XN(i) − µ
∣∣ ≤ d

√
N (i)

}

≥ Pµ,σ
{√

N (i)
∣∣XN(i) − µ

∣∣ /U (i)
m ≤ b

(i)
m,α

}
, using lower bound from (3.1).

(3.2)

Now, since U
(i)2
m is location invariant and hence Xn, U

(i)2
m are independently dis-

tributed for all fixed n ≥ m (Basu, 1955). We may rewrite (3.2) as follows:

Pµ,σ
{
µ ∈ I

(i)

N(i)

}

≥ Σ∞n=mPµ,σ

{√
n
∣∣Xn − µ

∣∣ /U (i)
m ≤ b

(i)
m,α ∩N (i) = n

}

= Σ∞n=mPµ,σ

{√
n
∣∣Xn − µ

∣∣ /U (i)
m ≤ b

(i)
m,α

}
Pµ,σ

{
N (i) = n

}

= (1− α)Pσ
{
N (i) <∞

}

= (1− α),

(3.3)

which proves part (i).

Proofs of Parts (ii) and (iii) are routine. �

Obviously, all four procedures from (2.2)-(2.3) have the same exact consistency or

consistency property (part (i)) and first-order asymptotic consistency property (part

(iii)) in the sense of Chow and Robbins (1965), Ghosh and Mukhopadhyay (1981),

and Mukhopadhyay (1982). The limiting ratio, namely lim
d→0

Eµ,σ
[
N (i)/C

]
, would

vary from one procedure to another which is reflected in the expression
(
b
(i)
m,α/a

)2

given in part (ii). This limiting ratio would exceed one, that is, all four procedures

will be associated with appropriate limiting oversampling rates which are illustrated

in Table 3.1.

3.1. Moderate Sample Size Performances Via Simulations

We fixed m = 10, 15, 20 and estimated the 100(1 − 1
2
α) percentile point b

(i)
m,α for

the distribution ofW
(i)
m , i = 2, 3, 4 by means of simulation. In a specific situation with

the sample size m, we obtained m observations from N(0, 1) under each replication

and recorded the associated observed value w
(i)
mr of W

(i)
m during the rth replication,

r = 1, 2, ..., 100, 000. From such 100, 000 observedw
(i)
mr values we obtained the required

percentiles b
(i)
m,α for each i = 2, 3, 4. These estimated b

(i)
m,α’s are summarized in Table

3.1. Observe that b
(1)
m,α is normally read from a t-table.

We fixed α(= 0.10, 0.05, 0.01) and d so that C varied within a large range values.

Then, under each configuration, we implemented the two-stage procedures from (2.2)-

(2.3) and estimated the average sample size (n), the maximum sample size (max(n)),

the standard error (s(n)) of n, and the coverage probability (p) based on 100, 000

replications via computer simulations by drawing random samples from a N(5, 4)

population. As a representative of our findings, we provide Table 3.1 that summarizes
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the analyses under one configuration only, namely when α = 0.10 and d = 0.5 so that

C = 43.29.

Table 3.1. Estimated Average Final Sample Size, Maximum Sample Size,

and Coverage Probability Under Two-Stage Procedure (2.2)-(2.3):

α = 0.10, a = 1.645, d = 0.5, C = 43.29

m
(2.2)

index i
b
(i)
m,α

n

s(n) n/C b
(i)2
m,αa−2 max(n)

p

s(p)× 104

10 1 1.833113 54.25 1.2532 1.2418 224 0.90114

0.07991 9.4386

2 1.856686 55.60 1.2844 1.2739 245 0.90243

0.08646 9.3835

3 1.840581 54.68 1.2631 1.2519 233 0.90193

0.08149 9.4049

4 1.867060 56.28 1.3001 1.2882 300 0.90433

0.09108 9.3015

15 1 1.761310 50.21 1.1599 1.1464 180 0.90234

0.05924 9.3874

2 1.773683 50.88 1.1753 1.1626 192 0.90324

0.06350 9.3487

3 1.761506 50.22 1.1601 1.1467 190 0.90260

0.05988 9.3762

4 1.797205 52.31 1.2084 1.1936 229 0.90230

0.07165 9.3891

20 1 1.729133 48.37 1.1173 1.1049 143 0.90280

0.04897 9.3676

2 1.739828 48.97 1.1312 1.1186 159 0.9039

0.05265 9.3201

3 1.730803 48.46 1.1194 1.1070 145 0.90228

0.04962 9.3899

4 1.764796 50.40 1.1642 1.1510 199 0.90247

0.06178 9.3818

We have found that all of our two stage procedures defined in (2.2)-(2.3) perform

remarkably well for many realistic values of C whether C is moderate or large. Table

3.1 corresponds to C = 43.29 which may be considered rather on the small side.

Yet, the last column from Table 3.1 shows that fairly accurate estimated coverage

probabilities tend to exceed our nominal 90% level.

From the n-column, it is clear that all four procedures tend to oversample on an

average compared with C, but this oversampling rate (column 5) goes down steadily

as the pilot size m increases. The column 6 provides the limiting ratio of the average

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS006) p.2069



sample size compared with C. It is remarkable indeed how close the two columns 5

and 6 are even when C = 43.29. It is certainly good to know that “asymptotics”

kick in this early! However, from column 7, it becomes abundantly clear that the

probability distributions of all four stopping variables are heavily right-skewed.

In summary, we feel that the average sample size for the procedure (2.2)-(2.3)

based on Gini’s mean difference (corresponding to i = 3) is slightly closer to that of

Stein’s original procedure (corresponding to i = 1). While the average sample sizes for

the procedures based on mean absolute deviation (corresponding to i = 2) and range

(corresponding to i = 4) appear just a shade higher than the average sample size for

the procedure based on Gini’s mean difference (corresponding to i = 3), all three of

them are truly very close to each other. If observations from a normal population

arrive with some suspect outliers, then one may feel a bit wary to implement Stein’s

procedure (corresponding to i = 1). We have found that in such cases, these other

three procedures (corresponding to i = 2, 3, 4) hold up better than Stein’s original

procedure (corresponding to i = 1).

4. Known Positive Lower Bound for the Variance
A multi-stage or sequential procedure with its associated stopping variable or

final sample size N is customarily called asymptotically second-order efficient (Ghosh

and Mukhopadhyay, 1981) if Eµ,σ[N − C] remains bounded as d → 0. The Stein

procedure and the other three two-stage procedures described in the previous section

have exact consistency and asymptotic consistency properties, but they do not have

even the basic asymptotic first-order efficiency property. One may refer to Woodroofe

(1977) and Lai and Siegmund (1977,1979), among other sources, for approaches to

second-order approximations.

In a situation where one has some preliminary information about a positive lower

bound for the population variance σ2, Mukhopadhyay and Duggan (1997) showed

that appropriately modified Stein procedure enjoyed the asymptotic second order

efficiency property. A natural question that arises here is: Will analogously modified

versions of other stopping rules defined here in (2.2) enjoy first- and second-order

efficiency properties? This research is ongoing, and we cannot provide a definitive

answer yet, but we feel rather strongly that the answer should probably be in the

affirmative.

We should point out that this literature has since grown substantially. A series of

solo as well as collaborative communications from M. Aoshima, N. Mukhopadhyay,

Y. Takada, K. Yata are especially noteworthy. However, we refrain from giving more

specifics in this preliminary note.

Suppose that σ > σL(> 0) and σL is known. In this case C > a2σ2L/d
2 and this

lower bound is known! Along the line of Mukhopadhyay and Duggan (1997), we let

m0(≥ 2) be the minimal sample size and define:

m ≡ m(d) = max
{
m0,

〈
a2σ2L/d

2
〉
+ 1
}
. (4.1)

We begin with pilot observations X1, ..., Xm and define the final sample size:
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R(i) ≡ R(i)(d) = max
{
m,
〈
b(i)2m,αU

(i)2
m /d2

〉
+ 1
}
, i = 1, 2, 3, 4, (4.2)

along the lines of (2.2).

If R(i) = m, no more observations are recorded beyond the pilot set, but if R(i) >

m, then we would record R(i)−m additional observations in the second stage. Finally,

based on the combined data X1, ..., XR(i) from both stages, we would propose the

following fixed-width confidence interval

I
(i)

R(i)
=
[
XR(i) ± d

]
(4.3)

for µ, i = 1, 2, 3, 4.

We emphasize that Mukhopadhyay and Duggan’s (1997) two-stage procedure de-

veloped the final sample size R(1) and the associated fixed-width confidence interval

I
(1)

R(1)
for µ.

Table 4.1. Estimated Average Final Sample Size, Maximum Sample Size,

and Coverage Probability Under Two-Stage Procedure (4.1)-(4.3):

α = 0.10, a = 1.645, d = 0.5, C = 43.29,m0 = 5

m

σL

(4.2)

index i
b
(i)
m,α

n

s(n) n/C b
(i)2
m,αa−2 max(n)

p

s(p)× 104

11 1 1.812461 53.00 1.2243 1.21418 242 0.90304

1 0.07434 9.3573

2 1.828029 53.93 1.2458 1.23513 274 0.90192

0.07993 9.4053

3 1.818508 53.10 1.2266 1.2223 254 0.90226

0.07529 9.3908

4 1.846661 54.99 1.2703 1.2604 299 0.90100

0.08570 9.4445

30 1 1.697261 46.95 1.0845 1.06519 119 0.90342

1.65 0.03703 9.34089

2 1.708158 47.46 1.0963 1.07892 124 0.90383

0.03971 9.32316

3 1.698744 46.98 1.0852 1.06706 122 0.90331

0.03744 9.34564

4 1.736417 49.24 1.1374 1.11491 239 0.90676

0.05051 9.19491

Along the line of the data analyses described in Section 3.1, we ran 100, 000

simulations each, implementing all four modified two-stage procedures from (4.1)-

(4.3) under many configurations with different choices of m0, σL, α, d, C by drawing

random samples from a N(5, 4) population. In Table 4.1, we simply highlight two

specific illustrations.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS006) p.2071



It is again noteworthy how close the two columns 5 and 6 are when C = 43.29. It

is again good to know that “asymptotics” kick in this early! However, from column

7, it becomes abundantly clear that the probability distributions of all four stopping

variables are right-skewed, however, the extent of skewness is visibly less now than

what we had observed in the case of the procedures (2.2)-(2.3).

Table 4.2. Estimated Values of Eµ,σ[R
(i) − C] Under

Two-Stage Procedure (4.1)-(4.3):

α = 0.10, a = 1.645, d = 0.5, C = 43.29,m0 = 5

m

σL

(4.2)

index i
r(i) − C values

11 1 9.755025 9.775675 9.844525 9.875505 9.769575

1 9.703105 9.721545 9.694035 9.837535 9.833515

2 10.65886 10.63817 10.75354 10.76129 10.68779

10.60595 10.63025 10.60405 10.76835 10.74475

3 9.867775 9.875965 9.943805 9.963875 9.876965

9.795235 9.818285 9.798655 9.954495 9.939645

4 11.74031 11.86000 11.82571 11.92762 11.74636

11.70858 11.72324 11.66931 11.83700 11.85849

30 1 3.647325 3.655285 3.651765 3.594345 3.657865

1.65 3.666105 3.587775 3.613645 3.664185 3.665145

2 4.196405 4.191895 4.219975 4.140235 4.205325

4.190065 4.117195 4.178455 4.204255 4.194285

3 3.702345 3.700165 3.710985 3.645085 3.712255

3.712605 3.631335 3.670615 3.712825 3.708115

4 5.842975 5.906655 5.824335 5.832855 5.840095

5.924275 5.851385 5.777935 5.880545 5.935775

From Table 4.1, it is clear that the average oversampling rate has gone down

significantly compared with what we had seen in Table 3.1, especially when σL was

chosen 1.65 (closer to unknown σ) instead of 1. A drop from 22%−27% to 8%−13%!
In order to grasp whether asymptotic second-order properties could possibly pre-

vail, we replicated the process of 100, 000 simulations 10 times each for the two-stage

procedures (4.1)-(4.3) under the same scenario as before. In Table 4.2, we exhibit

10 observed values of r(i) − C each estimating Eµ,σ[R
(i) − C], i = 1, 2, 3, 4 when

σL = 1, 1.65.

We again find that the procedure based on Gini’s mean difference (corresponding

to i = 3) and Stein’s original procedure (corresponding to i = 1) are very close to

each other. While Eµ,σ[R
(4) − C] for the procedure based on range (corresponding

to i = 4) appears just a shade higher than Eµ,σ[R
(2) − C] based on mean absolute

deviation (corresponding to i = 2), all three of them stay tightly close to each other.
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It is clear that overall r(i) values are much tighter around C when σL was chosen 1.65

(closer to unknown σ) instead of 1.

In summary, we feel strongly that in all likelihood, the three modified procedures

from (4.1)-(4.3) corresponding to i = 2, 3, 4 are probably asymptotically second-

order efficient even though we have not proved such a result yet. More theoretical

assessments will be forthcoming.
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Abstract

We revisit fixed-width (= 2d) confidence interval procedures with a preassigned

confidence coefficient (≥ 1 − α) for the mean µ of a normal distribution when its

variance σ2 is unknown. Had σ been known, the required optimal fixed sample size

would be C ≡ a2σ2/d2 where a ≡ aα is the upper 50α% point of N(0, 1). In his

fundamental two-stage procedure, Stein (1945,1949) estimated C by replacing σ2 with

a sample variance from pilot data of size m(≥ 2) and a with tm−1,α/2. Mukhopadhyay

(1982) opened the possibility of incorporating less traditional estimators of σ2.

In this note, we focus on estimating σ2 by a statistic U2
m defined via mean absolute

deviation (MAD), range, and Gini’s mean difference. Obviously, then, tm−1,α/2 must

be replaced by the upper 50α% point corresponding to a pivotal distribution of the

sample mean standardized by Um. This way, we explore the role of Mukhopadhyay’s

(1982) two-stage confidence interval procedure when the requisite sample size is de-

termined through MAD, range, or Gini’s mean difference along with associated exact

and first-order properties. Next, we also briefly revisit Mukhopadhyay and Duggan’s

(1997) updated Stein’s two-stage methodology that was proposed when a known pos-

itive lower bound σ2L was available for σ
2 in the present light with hints of associated

second-order properties. We supplement this ongoing methodological research with

data analyses.
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