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1 Introduction

We discuss problems of the heavy-tailed pdf estimation. The following three approaches of the heavy-

tailed pdf estimation are considered:

1. Combined parametric-nonparametric methods, where the tail domain of the pdf is fitted by

some parametric model and the main part of the pdf (the body) is fitted by some nonparametric

method like a histogram.

2. Re-transformed estimates, that use a preliminary transformation of an underlying random vari-

able (rv) to a new one with a pdf that is more convenient for the restoration.

3. Kernel estimates with a variable bandwidth.

The estimators of the pdf contain smoothing parameters. The selection of the latter using samples

of moderate sizes strongly impacts on the accuracy of the estimation. We consider some data-driven

methods that are used for smoothing or regularization of the pdf estimates. Apart of well-known

ones like the cross-validation methods we present an alternative discrepancy method proposed by the

author. The discrepancy method is based on nonparametric statistics like the Kolmogorov-Smirnov or

the von Mises-Smirnov statistics, and it uses quantiles of their limit distributions as the discrepancy

value between an empirical df and a modeled df.

The convergence rates of the considered estimates are compared.

2 Specific features of the analysis of heavy-tailed distributions

Let X1, . . . , Xn be a sample of n independent identically distributed (iid) rvs distributed with the

heavy-tailed df F (x).

Definition 1 A df F (x) (or the rv X) is called heavy-tailed if its tail F̄ (x) = 1 − F (x) > 0, x ≥ 0,

satisfies ∀y ≥ 0

lim
x→∞

P{X > x+ y|X > x} = lim
x→∞

F̄ (x+ y)/F̄ (x) = 1.

Specific features of the analysis of heavy-tailed distributions are the following:

• a heavy tail goes to zero at ∞ slower than by an exponential rate;

• Cramér’s condition, which states the existence of the moment generating function, is violated;

• sparse observations in the tail domain of the distribution.

We aim to obtain pdf estimators that fit the whole heavy-tailed pdf (the ’tail’ and the ’body’) well

enough (that is the combined parametric-nonparametric method, Markovitch and Krieger (2002)), the

nonparametric pdf estimators with an accurate tail behavior (that are the re-transformed nonpara-

metric estimators, Maiboroda and Markovich (2004)). Such estimators are required particularly to
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compare pdfs of different populations needed in classification. Since the object may have a property

value belonging to the ’tail’ or to the ’body’ of the distribution, an accurate pdf estimate is of great

importance. For example, in telecommunication systems one needs to classify measurements belonging

to different sources such as mobile, fax, normal calls, Internet etc.

Due to the lack of observations beyond the sample maximum the only available information is given

by an asymptotic limit distribution of the sample maximum Mn = max(X1, X2, . . . , Xn). We use it

as a parametric tail model of the distribution in the pdf estimators.

If F (x) is such that the limit distribution of Mn exists, then this limit distribution can only be of the

following form for some normalizing constants an, bn, Gnedenko (1943)

P{(Mn − bn)/an ≤ x} = Fn(bn + anx) →n→∞ Hγ(x), x ∈ R,

and an extreme value df Hγ(x) is of the following type:

Hγ(x) =


exp(−x−1/γ), x > 0, γ > 0 ’Fréchet’,

exp(−(−x)−1/γ), x < 0, γ < 0 ’Weibull’,

exp(−e−x), γ = 0, x ∈ R ’Gumbel’.

The parameter γ is called the extreme value index (EVI) and defines the shape of the tail of the rv

X.

Since kernel estimators with variable kernels are proposed in the literature as a good alternative to

estimate the heavy-tailed pdfs, we compare the latter with other estimates.

3 Combined parametric-nonparametric methods

Let Xn = {X1, . . . , Xn} be a sequence of positive iid rvs distributed with the heavy-tailed df F (x) and

the pdf f(x) = F ′(x). A combined parametric-nonparametric estimate employs a separate estimation

of the ’tail’ and the ’body’ of the pdf, namely

f̃(t, γ,N) =

{
fN (t), t ∈ [0, X(n−k)],

fγ(t), t ∈ (X(n−k),∞),
(1)

Here X(n−k) is some order statistic corresponding to the sample Xn,

fγ(x) = (1/γ)x−1/γ−1 + (2/γ)x−2/γ−1,

is the parametric tail model of Pareto type and

fN (t) =
1

X(n−k)

N∑
j=1

λjφj(
t

X(n−k)
),(2)

is the nonparametric estimate of the main part of the pdf. It is an expansion by basis functions φk(t),

k = 1, 2, . . ., e.g., φk(t) =
√
4/π cos ((2k − 1)(π/2)t), t ∈ [0, 1], k = 1, 2, . . ..

The EVI γ is the most important parameter to describe the heaviness of the tail. It can be estimated

by Hill’s estimator (or by many other estimators) by the k + 1 largest values of the order statistics

X(1) < . . . < X(n) of the sample Xn. The parameter k indicates X(n−k) and, therefore, the part of the

distribution which controls the extreme values of the underlying rv. It can be estimated for instance

by bootstrap methods, Markovich (2007). One has first to estimate k to fit the ’tail’ and then to adapt

the ’body’ of the pdf.

To provide all properties of the real pdf, the estimate (1) should be normalized, i.e. one can take

f∗(t, γ,N) =


f̃(t, γ,N)∫ ∞

0
f̃(t, γ,N)1(f̃(t, γ,N) > 0)dt

, t ∈ A,

0, t ̸∈ A

(3)
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for A =
{
t ∈ [0,∞) : f̃(t, γ,N) > 0

}
instead of f̃(t, γ,N) to get

∫∞
0 f∗(t, γ,N)dt = 1 and f∗(t, γ,N) ≥

0.

To avoid a gap between the two parts fN (t) and fγ(t) at the point X(n−k) one can undertake some

smoothing in the neighborhood of X(n−k), Markovich (2007).

One is free to select many combinations of nonparametric and parametric estimators. The accuracy is

then determined by the uncertainties of the estimates. The accuracy of fγ(t) depends on the selection

of the appropriate parametric tail model and an accurate estimation of γ. Particularly, a histogram

or a kernel estimate can be selected as fN (t).

The application of the structural minimization method (Vapnik (1982)) to estimate N and the coeffi-

cients λ = (λ1, ..., λN )T in (2) allows us to estimate a multimodal pdf defined at the compact interval

better than the kernel estimates, Vapnik and Stephanyuk (1979). Such estimate (2) is used now to

determine multimodal heavy-tailed pdfs, Markovich and Krieger (2002). The structural minimization

method of the pdf estimation modifies the least squares method for correlated data and provides the

minimum of a specific upper bound of the mean risk

J (N,λ)

 l−1 · (Y − F̂ (λ))t ·R−1
y · (Y − F̂ (λ))

1−
√
l−1 · [(N + 1)(1 + ln l − ln (N + 1))− ln η]


∞

(4)

with respect to parameters (N,λ), where η > 0 is a confidence level, [z]∞ =

{
z, z > 0

∞, z ≤ 0,
and

Y = (Y1, . . . , Yl)
T , Yi = yi −

∫ τi

0

φ1(t)

ψ1
dt,

Ry is a covariance matrix of the vector y = (y1, . . . , yl)
T , (Markovich (2007), Sec. 3.2.1).

As yi one can take the estimate Φn∗(t) of the unknown df F (t) at l uniformly distributed points

τi = i/(l + 1), i = 1, . . . , l determined in (6). We use:

F (λ) =
(
F λ
1 , . . . , F

λ
l

)T
, F λ

i =

∫ τi

0

 N∑
j=2

λj(φj(t)−
ψj

ψ1
φ1(t))

 dt

F (λ) = A · λ1

Here the elements of the l × (N − 1) matrix A are given by

Ai,j =

∫ τi

0

(
φj(t)−

ψj

ψ1
φ1(t)

)
dt,

ψj =

∫ 1

0
φj(t)dt, i = 1, . . . , l; j = 2, . . . , N.

Λ1 is the (N − 1)× 1 vector of the parameters λj , j = 2, . . . , N . The matrix

R−1
y =



r1 ρ1 0 . . . . . . 0

ρ1 r2 ρ2 0 . . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... . . . 0 ρl−2 rl−1 ρl−1

0 . . . . . . 0 ρl−1 rl


(5)

with

r1 =
n∗F (τ2)

F (τ1) (F (τ2)− F (τ1))
, rl =

n∗(1− F (τl−1))

(1− F (τl)) (F (τl)− F (τl−1))
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ri−1 =
n∗ (F (τi)− F (τi−2))

(F (τi)− F (τi−1)) (F (τi−1)− F (τi−2))
, i = 3, 4, . . . , l;

ρi = − n∗

(F (τi+1)− F (τi))
, i = 1, 2, . . . , l − 1,

is used. However, the following estimate Φn∗(t) is used instead of the unknown df F (t):

Φn∗(t) =


1

2n∗

(
t
t1

)
, 0 < t ≤ t1

m−0.5
n∗ + 1

n∗

(
t−tm

tm+1−tm

)
, tm < t ≤ tm+1, m = 1, . . . , n∗ − 1

n∗−0.5
n∗ + 1

2n∗

(
t−tn∗
1−tn∗

)
, tn∗ < t ≤ 1

(6)

The minimization algorithm has two stages:

1. The df F (t) and R−1
y are estimated by the sample using (6) and (5).

2. In (4) R−1
y is replaced by its estimate and the parameters of the pdf estimate gN (t) are obtained

by the minimization of J (N,λ) over N and λ.

The method provides
∫ 1
0

∑N
j=1 λj φj(t)dt = 1.

Practical recommendations

1. Let η = 0.05.

2. Stefanyuk (1984) recommended selecting l = 5n/ lnn to provide the asymptotic minimum of the

L2 error as n→ ∞.

3. To avoid division by zero in the formula (6), the points {tm,m = 1, ..., n∗} cannot repeat each

other.1

4. λ1 is calculated by λ1 = (1−
∑N

j=2 λjψj)/ψ1.

5. One minimizes the empirical risk l−1(Y −AΛ1)
TR−1

y (Y −AΛ1) over Λ1 = (λ2, . . . , λN )T for each

fixed N . The minimum gives the following estimate:

λ∗N =
(
ATR−1

y A
)−1

ATR−1
y Y

Among the vectors λ∗N , N = 2, 3, . . . , Nmax (where Nmax is the maximum value of N considered,

usually Nmax = 20) one selects those corresponding to the minimum of J(N,λ).

6. The empirical risk (the numerator of (4)) has to decrease with increasing N . If this risk increases,

then the matrix of the system is nearly singular.

7. The minimum of (4) is not necessarily reached for a maximal N . For such N the empirical risk

is minimal, but the inverse denominator of (4) is maximal.

8. Finally, the ’body’ estimate of the pdf is calculated by the formula (2).

9. One can use another complete system of basis functions φk(t), k = 1, 2, . . . , instead of the

trigonometric functions.

1For continuous F (x) the repetitions are impossible.
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4 Re-transformed nonparametric estimators

We consider the transform-retransform scheme to improve the behavior of the pdf estimate at the

tail. The background of the transformation idea is given by the necessity of a different amount of

smoothing at different locations of a heavy-tailed pdf. Then re-transformed pdf estimates with fixed

smoothing parameters work like estimates with location-adaptive variable parameters. Hence, such

estimates may be stretched at the tail of heavy-tailed pdfs.

Let X-space data are transformed via a monotone increasing continuously differentiable ”one-to-one”

transformation function T (x) to obtain Y1, . . . , Yn (Yi = T (Xi)). The derivative of the inverse function

T−1 is assumed to be continuous. The df of Yj is given by

G(x) = P{Yi ≤ x} = P{T (Xi) ≤ x} = F (T−1(x))(7)

The re-transformed estimate of the pdf of Xi is given by

f̂(x) = ĝ(T (x))T ′(x),

where g(x) is the pdf of the rv Yi and ĝ(x) is its estimate. To fit the pdf f(x), one has first to select

the transformation and to estimate g(x).

The selection of T (x) is determined by a ’target’ df G(x) and by the unknown df F (x) of the rv X1.

The ’target’ df can be selected in such a way that the pdf g(x) should be convenient for the estimation.

Fixed transformations like lnx, 2/π arctanx do not require any knowledge about the distribution of

X and are simpler for practice. But they can lead to a non-predictable pdf of the transformed rv Yj
that has discontinuity and which is difficult to estimate.

There are the following problems of the application of the transform-re-transform scheme to heavy-

tailed pdfs. The df F (x) is unknown and it is impossible to transform it to a desirable pdf g(x). One

has to select a parametric or non-parametric family of distributions as a guess df F (x) as well as a

target pdf g(x) to provide the stability of the re-transformed estimates to minor perturbations in the

EVI estimates. Moreover, the selected pdf estimate has to keep the tail decay rate of the true pdf

after the inverse transformation.

The adaptive transformation, Maiboroda and Markovich (2004),

Tγ̂(x) = Φ−1(Ψγ̂(x)) = 1− (1 + γ̂x)−1/(2γ̂)

is obtained from (7) assuming that the fitted df F (x) of Xi is the Generalized Pareto distribution

Ψγ̂(x) =

{
1− (1 + γ̂x)−1/γ̂ , x ≥ 0,

0, x < 0,

and the target df G(x) of Yi is the positive triangular one

Φ(x) = (2x− x2)1{x ∈ [0, 1]}+ 1{x > 1}.

The choice of a Generalized Pareto distribution is widespread and motivated by Pickands theorem.

It states that for a certain class of distributions and for a sufficiently high threshold u of the rv X

the conditional distribution of the overshoot Y = X − u, provided that X exceeds u, converges to a

Generalized Pareto distribution, Markovich (2007).

The transformation to a uniform distribution at [0, 1] with the df Φuni(x) = x1{x ∈ [0, 1]}+1{x > 1},
as a target df has been checked also. However, it leads to g(x) → ∞ as x → 1 when the γ̂ underesti-

mates the true EVI γ (γ̂ < γ). This may cause problems for the estimation of g(x).

The transformation Tγ̂(x) provides a pdf g(x) at [0, 1] which is continuous in the neighborhood of

x = 1 for typical distributions (with regularly varying tails, lognormal-type tails and Weibull-like

tails) and for a consistent estimate γ̂ of EVI γ.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2955



The polygram (i.e., a histogram with variable bin width) and kernel estimate (8) are taken as esti-

mators ĝ(x). Let us explain why the polygram is preferable compared the histogram. The polygram

dynamically adapts the bin width to the data. Therefore, it works better than a histogram. This is

especially important due to sparse observations at the tail domain of the heavy-tailed distribution and

hence, in the neighborhood of x = 1 after the data transform. If the lengths of the bins are equal,

very few observations fall into the right-most bin. Hence, the histogram estimate is not stable at the

tail.

However, without the assumption on the class of the tail, an accurate restoration of the tail by means

of a nonparametric method is impossible.

5 Kernel estimators with variable bandwidth

If the distribution is heavy-tailed, the well-known kernel estimators

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(8)

with a bandwidth h > 0 which is fixed across the entire sample may provide misleading results in

the tail domain or over-smooth the ’body’ of the pdf. To overcome this problem one can use kernel

estimators with kernels that vary from one point to another. A variable bandwidth kernel estimate is

defined as follows, Abramson (1982),

f̂A(x|h) = (nh)−1
n∑

i=1

f(Xi)
1/2K

(
(x−Xi)f(Xi)

1/2/h
)
.

Its practical version is determined by

f̃A(x|h1, h) = (nh)−1
n∑

i=1

f̂h1(Xi)
1/2K

(
(x−Xi)f̂h1(Xi)

1/2/h
)
,(9)

where f̂h1(x) is a pilot kernel estimate (8). Main advantages of f̂A(x|h) are its non-negativity and the

best possible mean squared error (MSE). The MSE of a kernel estimate is determined as

MSE = E

∫ (
f̂h(x)− f(x)

)2
dx

The standard kernel estimate gives MSE(f̂h) ∼ n−4/5 (with bias ∼ h2 and variance ∼ (nh)−1) if a

second-order kernel is used, the bandwidth h is taken proportional to n−1/5 and the pdf f(x) has two

continuous derivatives.

The variable bandwidth kernel estimate provides MSE(f̂A(x|h)) ∼ n−8/9 (with bias ∼ h4 and

variance ∼ (nh)−1) if a symmetric kernel such as
∫
x4|K(x)|dx <∞ is used, the bandwidth h ∼ n−1/9

and f(x) has four continuous derivatives, Hall and Marron (1988). This implies that the improvement

of the MSE arises due to the reduction of the bias whereas the variance cannot be reduced.

However, it does not imply that the estimation of f̂A(x|h) at the tail domain will be good enough.

Relatively large values of the pdf at the body generate the main contribution in the MSE in contrast

to small values at the tail. Hence, the MSE and measures of the metric spaces C, L1 and L2 are not

sensitive to the accuracy of the estimation at the tail.

The disadvantage of f̂A(x|h) is that it cannot provide an accurate estimation of the PDF at infinity, at

least by compactly supported kernels, because is is defined on a finite interval which is approximately

the same as the range of the sample. This range can be extended by a long-tailed kernel. Then the

accuracy of the estimate at the infinity will depend on the form of the kernel.

The variable bandwidth kernel estimates can be improved by means of the transform-retransform

scheme. This allows us to estimate the tail of the pdf better, see an example in Fig. 1.
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Figure 1: The re-transformed kernel estimate (8) (line marked by circles) and the variable bandwidth

kernel estimate (9) without transformation (dotted line) with Epanechnikov’s kernel K(x) = 3/4(1−
x2)1{|x| ≤ 1} for Pareto distribution (solid line): the pdf body (left) and the pdf tail (right). For

both estimates h is selected by D-method (10) (h = 0.21 for the first estimate and h = 0.11 for the

second one), h1 = 1.915 is calculated by over-smoothing bandwidth selector (Wand and Jones (1995))

ĥOS =
(

243R(K)
35µ2(K)2n

)1/5
· σ, µ2(K) =

∫
z2K(z)dz, R(K) =

∫
K2(x)dx, σ is a standard deviation. The

estimate (9) is interrupted before x = 20.

6 Smoothing methods

To improve the accuracy of re-transformed estimates, the selection of the smoothing parameter (e.g.,

the bandwidth of kernel estimates or the bin width of a polygram) constitutes the most important

problem. For moderate sample sizes, a data-dependent choice of the smoothing parameter of the pdf

estimate is more productive than one derived from the theory such as h = cn−1/5, where c is some

positive constant.

A most popular data-dependent method is given by cross-validation. This method produces consistent

nonvariable kernel estimates (8) in the L1 metric only for distributions with a bounded support,

Chow et al. (1983). For heavy-tailed pdfs it gives a h which does not converge to 0 as n → ∞.

It implies inconsistency, Devroye and Györfi (1995). The cross-validation method that is based on

the maximum likelihood idea has several disadvantages. These are a slow convergence rates, a high

sampling variability (see Park and Marron (1990)) and a possibility to get a local extremum instead

of a global one.

Further, we focus at the discrepancy method that is an alternative to the cross-validation method.

It was proposed and investigated in Markovich (1989) and Vapnik et al. (1992). The smoothing

parameter h (bandwidth, bin width) is selected as a solution of the discrepancy equation

ρ(F̂h, Fn) = δ,

where, F̂h(x) =
∫ x
−∞ f̂h(t)dt, f̂h(t) is a nonparametric estimate of the pdf, δ is a uncertainty of the

estimation of the df F (x) by the empirical DF Fn(t), i.e. δ = ρ(F, Fn), and ρ(·, ·) is a metric in the

space of dfs.

Since δ is usually unknown, the quantiles of the limit distribution of the von Mises-Smirnov statistic

ω2
n = n

∫ ∞

−∞
(Fn(x)− F (x))2 dF (x)

or Kolmogorov-Smirnov statistic

√
nDn =

√
n sup

−∞<x<∞
|F (x)− Fn(x)|

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2957



are used as δ.2

As practical versions one can use the following equations regarding h:

ω̂2
n(h) = 0.05 as ω2-method,

√
nD̂n(h) = 0.5 as D-method,(10)

where

ω̂2
n(h) =

n∑
i=1

(
F̂h(X(i))−

i− 0.5

n

)2

+
1

12n
,

√
nD̂n(h) =

√
nmax(D̂+

n , D̂
−
n ),

and

D̂+
n = max

1≤i≤n

(
i

n
− F̂h(X(i))

)
, D̂−

n = max
1≤i≤n

(
F̂h(X(i))−

i− 1

n

)
,

The values 0.05 and 0.7 are the quantiles corresponding to a maximum of the pdf of the ω2
n and Dn

statistics, X(1) < X(2) < . . . < X(n) are order statistics of the sample Xn. The corrected value δ = 0.5

for Dn is found for moderate samples, Markovich (1989).

For some heavy-tailed distributions the discrepancy equations may have no solutions. It implies that

may be higher quantiles of distributions of statistics ω2
n and

√
nDn are required.

Hence, it is better to transform first the data to a compact interval and then to estimate the smoothing

parameter of the pdf g(x) if the latter is sufficiently smooth.

D−method for a variable bandwidth kernel estimator

Consider the estimate (9). Let h∗ be a solution of the equation

sup
−∞<x<∞

|Fn(x)− FA
h,h1

(x)| = δn−1/2,(11)

where FA
h,h1

(x) =
∫ x
−∞ f̃A(t | h1, h)dt, δ > 0 is some constant. The following theorems contain

properties of the D-method (10), Markovich (2007).

Theorem 1 Let Xn = {X1, . . . , Xn} be iid rvs with pdf f(x). Select the bandwidth h1 = cn−1/5, c > 0

in f̂h1(x). We assume that for x ∈ R, K(x) is continuous and satisfies

sup
x

|K(x)| <∞,

∫
R
K(x)dx = 1.

Then any solution h∗ = h∗(n) of (11) obeys the condition

h∗ → 0, as n→ ∞.

Theorem 2 Suppose that the pdf f(x) has m − 1 continuous derivatives and its mth derivative is

bounded for a positive integer m. Let f(x) be estimated by a variable bandwidth kernel estimate

f̃A(x|h1, h) (9). Assume that the conditions on K(x) given in Theorem 1 hold. In addition, we assume

that K(x) has the order m+1 and
∫
R |K(x)|dx = A <∞ holds. Let the non-random bandwidth h1 in

f̂h1(x) obey the conditions: h1 → 0, nh1 → ∞ as n → ∞. Then any solution h∗ = h∗(n) of equation

(11) obeys the condition

P{h∗ > ρn−1/(α(m+1))} < exp
(
−2n1−2/α

)
,(12)

where ρ = (2(1 +Aδ)/G)1/(m+1) is a constant, G = 1/(m+1)! supx |
∫∞
−∞ f (m)(x− hyθ)ym+1K(y)dy|,

0 < θ < 1, for any α > 2.

2The distributions of these statistics do not depend on F (x).
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A kernel K(x) has an order r when a kernel function is chosen such that

∫
ukK(u)du =


1, k = 0

0, 1 ≤ k ≤ r − 1,

Kr−1 ̸= 0, k = r,

holds.

Theorem 3 Let f(x) and 1/f(x) have four continuous derivatives and f(x) be bounded away from

zero on ℜε ≡ {x ∈ R : for some y ∈ ℜ, ∥x − y∥ ≤ ε}, ε > 0 (∥ · ∥ is the usual Euclidean norm).

Let the pdf f(x) be estimated by a variable bandwidth kernel estimate f̃A(x|h1, h) (9). Assume the

conditions on K(x) given in Theorem 2 hold for m = 3. We assume that K(x) is symmetric, has two

bounded derivatives and vanishes outside a compact set. Assume, that the non-random bandwidth h1
in (9) obeys h1 = c∗n

−1/5, where c∗ > 0 is some constant. Then for any solution h∗ of (11) we have

P{limn→∞n
4/9

(
Ef̃A(x|h1, h∗)− f(x)

)
≤ ψ(x)} = 1,

where ψ(x) = (K3/24) (d/dx)
4 (1/f(x))ρ4, and ρ is defined in Theorem 2.

Corollary 1 Assume that the conditions of Theorem 3 hold. Let us assume, that E(Z · f̂A(x|h)) = 0,

where Z is a standard normal rv. Then, MSE(f̃A(x|h1, h∗)) may reach the order n−8/9 if a maximal

solution of (11) h∗ has the order n−1/9.

Remark 1 Since the function of the rv X1 (that is one term in the sum f̂A(x|h)) and the normal

distributed rv Z are independent, the condition E(Z · f̂A(x|h)) = 0 is not rigorous.
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ABSTRACT

To estimate a heavy-tailed probability density function (pdf), different approaches are summa-

rized: (1) a combined parametric - nonparametric method, (2) methods based on data transformations

and, (3) a variable bandwidth kernel estimator. The first method implies a separate estimation of

the ’tail’ and ’body’ of the pdf by parametric and nonparametric methods, respectively. We consider

a Pareto-type model to fit the ’tail’ and a finite series expansion in terms of trigonometric functions

as ’body’ estimate. To fit the body of a multi-modal pdf better, we use a structural risk minimization

method for the selection of the parameters. The second approach requires a special data transformation

which improves the estimation in the ’tails’, namely, the transformation from a Generalized Pareto

distribution function (df) which is assumed as a fitted df to a triangular df selected as the target

df. The latter transformation is robust regarding the uncertainty of the tail index estimation. The

triangular pdf can be estimated by a nonparametric estimator, e.g., a Parzen kernel estimator or a

polygram. Regarding the heavy-tailed pdf estimation a kernel estimator with a variable bandwidth is

usually recommended due to the variability of its bandwidth for each observation. It is demonstrated

that this estimator works better if a preliminary data transformation is used. To select data-driven

smoothing parameters for the mentioned estimators, a discrepancy method is considered as an alter-

native to the cross-validation method. The discrepancy method is based on nonparametric statistics

like the Kolmogorov-Smirnov or the von Mises-Smirnov statistics, and it uses quantiles of their limit

distributions as a unknown discrepancy between the fitted and empirical dfs. Moreover, the convergence

rates of these estimates are discussed.
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