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1. Introduction

The EMEA (1998) clinical trial guideline recommended to include a placebo control group C in
a confirmatory phase III trial when an experimental test group T is to be compared with an active
reference group R for establishing noninferiority of T with respect to R. Koch (2006) formulated a more
detailed regulatory point of view: Essentially, Koch said that ”both placebo and active comparator
should be included in the trial when the responses of both these treatments cannot be well predicted
in the patient population under study. However, it is an ethical mandate that the number of patients
randomized to the placebo group should be limited as much as possible. An adaptive design combined
with a multiple testing procedure may offer the opportunity to stop recruitment to the placebo group
after an interim analysis as soon as superiority of the experimental treatment over placebo has been
demonstrated. The trial is then continued into further stages to demonstrate the noninferiority of the
experimental treatment in comparison to the reference treatment”.

Let ∆ > 0 be a noninferiority margin, we test the a-priori ordered hypotheses, that, in short,
(I) : T > C and (II) : T > R − ∆, ∆ > 0. When (I) is shown, we can test for (II). For both
hypothesis tests, we can take the same significance level which is then the overall significance level in
this multiple testing problem. Pigeot et al. (2003) considered a different approach in a one-stage three-
arm noninferiority trial. They first required to show R > C before considering other comparisons.
This approach bears the risk that the whole study breaks down when R fails to be superior to C

although R may represent a very well established treatment.
In this paper, we consider normally distributed response variables with unknown variances in

general adaptive group sequential trials, see Hartung (2006). Parameterized p-values, see Cox and
Hinkley (1974), of the several stages are combined by use of the inverse normal method well known
from meta-analysis, see Hartung, Knapp, and Sinha (2008, Chapter 3). The resulting combined
statistics are used for group sequential hierarchical testing of the a priori ordered hypotheses (I) and
(II). Further, the concept of repeated confidence intervals, see Jennison and Turnbull (2000) and
references cited therein, is extended to the case of unknown variances and possibly adaptively chosen
sample sizes in an exact way. Note that, based on the closed testing principle, see Marcus, Peritz, and
Gabriel (1976), we can establish the superiority of T over R if the lower bound of the final repeated
confidence interval in (II) is positive.

Moreover, we develop formulae for sample size calculation in group sequential trials. These
formulae seem to be unknown so far, even in case of non-adaptive group sequential trials, where the
computed sample size for the first stage is used in all following stages.
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2. Group Sequential Testing

Let us consider a new treatment in a test group T , a standard treatment in a reference group
R, and a placebo treatment in a control group C. The associated response variables may be denoted
by XT , XR, and XC , which are mutually stochastically independent normally distributed random
variables with means µT , µR, µC and variances σ2

T > 0, σ2
R > 0, and σ2

C > 0, respectively, that is,

XT ∼ N
(
µT , σ

2
T

)
, XR ∼ N

(
µR, σ

2
R

)
, XC ∼ N

(
µC , σ

2
C

)
.

At level α ∈ (0, 0.5), we first consider the test problem

HTC
0 : µT ≤ µC versus HTC

1 : µT > µC .(1)

If HTC
0 is rejected in favor of HTC

1 at level α, then we consider the family of test problems

HTR
0,∆ : µT ≤ µR −∆ versus HTR

1,∆ : µT > µC −∆, ∆ ∈ [0,∆0](2)

at the same level α, where ∆0 ≥ 0 denotes some margin for the noninferiority parameter ∆. This hier-
archical testing procedure holds the overall significance level α, see Maurer, Hothorn, and Lehmacher
(1995).

We consider a comparative study, which is carried out in a number of independent stages, say
K. In the i-th stage, i = 1, . . . ,K, let be X̄Ti , X̄Ri , and X̄Ci the sample means of nTi ≥ 2, nRi ≥ 2,
and nCi ≥ 2 responses in the respective treatment groups. The variance parameters can be estimated
by the corresponding sample variances S2

Ti
, S2

Ri
, and S2

Ci
, which are stochastically independent of the

means and follow scaled χ2-distributions, that is, for i = 1, . . . ,K,

(nTi − 1)
S2
Ti

σ2
T

∼ χ2
nTi−1, (nRi − 1)

S2
Ri

σ2
R

∼ χ2
nRi−1, (nCi − 1)

S2
Ci

σ2
C

∼ χ2
nCi−1.(3)

The parameters of interest are θTC = µT − µC and θTR = µT − µR. Let tν denote the central
t-distribution with ν degrees of freedom, then, using Satterthwaite’s approximation, it approximately
holds in the i-th stage, i = 1, . . . ,K,

DTC
i (θTC) :=

X̄Ti − X̄Ci − θTC√
S2
Ti
/nTi + S2

Ci
/nCi

∼ tνi(TC),(4)

DTR
i (θTR) :=

X̄Ti − X̄Ri − θTR√
S2
Ti
/nTi + S2

Ri
/nRi

∼ tνi(TR),(5)

with

νi(TC) =

(
S2
Ti
/nTi + S2

Ci
/nCi

)2

(
S2
Ti
/nTi

)2
/(nTi − 1) +

(
S2
Ci
/nCi

)2
/(nCi − 1)

,

νi(TR) =

(
S2
Ti
/nTi + S2

Ri
/nRi

)2

(
S2
Ti
/nTi

)2
/(nTi − 1) +

(
S2
Ri
/nRi

)2
/(nRi − 1)

.

Provided σ2
T = σ2

C , σ2
T = σ2

R, or σ2
T = σ2

C = σ2
R, pooled sample variance estimators and exact

t-distributions can be used. We omit the details here.
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Let Ftν denote the cumulative distribution function of a t-variate with ν degrees of freedom,
then it holds, for the parameterized 1− p-values,

1− pdi (θd) = Ftνi (d)

(
Dd
i (θd)

)
∼ U(0, 1), d = TC, TR, i = 1, . . . ,K,(6)

where U(0, 1) stands for the uniform distribution on the unit interval. Consequently, we obtain

zdi (θd) := Φ−1
(
1− pdi (θd)

)
∼ N (0, 1), d = TC, TR, i = 1, . . . ,K,(7)

with Φ−1 the inverse of the standard normal cumulative distribution function Φ. Because the stages
of the trial are assumed to be independent, we define the combining pivotal quantities

Zdj (θd) :=
j∑
i=1

zdi (θd) ∼
√
j N (0, 1), d = TC, TR, j = 1, . . . ,K.(8)

Let Y1, . . . YK , in general, be mutually independent N (0, 1)-distributed random variables. Then
positive critical values cv1(d), . . . , cvK(d) may be defined by the following probability condition:

P

 j∑
i=1

Yi ≤ cvj(d) for all j = 1, . . . ,K

 = 1− α, d = TC, TR,(9)

for a predefined level α ∈ (0, 0.5), see Hartung (2006).
Using the critical values cvj(d) from (9), we get the following probability statements for the

combining pivotal quantities (8),

Pθd

(
Zdj (θd) ≤ cvj(d) for j = 1, . . . , k ≤ K

){ ≥ 1− α for k < K,

= 1− α for k = K,
d = TC, TR.(10)

Consequently, we can formulate the following test procedure at overall level of at most α: We reject
HTC

0 in favor of HTC
1 in (1) at the j-th stage, 1 ≤ j ≤ K, if

ZTCj (0) > cvj(TC) and ZTCj∗ (0) ≤ cvj∗(TC), j∗ = 1, . . . , j − 1.(11)

If HTC
0 is rejected at the j-th stage, we decide in favor of the alternative HTR

1,∆, ∆ ∈ [0,∆0], at the
k-th stage, j ≤ k ≤ K, in (2), if

∃k∆ ∈ {1, . . . , k} : ZTRk∆
(−∆) > cvk∆

(TR).(12)

If (12) holds, we will stop the trial after the k-th stage. We definitely stop the trial after the K-th
stage with either rejection or non-rejection of HTR

0,∆.

3. Group Sequential Confidence Intervals

The functions Ftν (·) and Φ−1(·), used in (6) and (7), are (strictly) monotone increasing in
their arguments. The pivotal quantities DTC

i (θTC) and DTR
i (θTR) from (4) and (5) are monotone

decreasing in θTC and θTR, respectively, implying that zdi (θd) = Φ−1{Ftνi(d) [D
d
i (θd)]}, see (7), is

monotone decreasing in θd, d = TC, TR, i = 1, . . . ,K. Consequently, ZTCj (θTC) and ZTRj (θTR) are
monotone decreasing in θTC and θTR, respectively, j = 1, . . . ,K.

Thus, we derive the lower confidence sets on θd as

CIdk,I(θd) :=
{
y ∈ IR | Zdj (y) ≤ cvj(d) for j = 1, . . . , k

}
, d = TC, TR, k = 1, . . . ,K.(13)

The confidence coefficient of CIdK,I is at least 1 − α and exactly 1 − α for k = K, see (10). Further,
the confidence sets are nested, that is, CIdk+1,I(θd) ⊂ CIdk,I(θd), k = 1, . . . ,K − 1. Because of the
monotonicity in y, the confidence sets are genuine intervals leading to
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CIdk,I(θd) =
[
Ldk,∞

)
, d = TC, TR,(14)

where Ldk = max{Ld(1), . . . , Ld(k)} and Ld(j) uniquely solves

Zdj [Ld(j)] = cvj(d), j = 1, . . . , k, k = 1, . . . ,K.(15)

The lower bounds Ldk from (14) can be now used in the hierarchical testing procedure. In accordance
to (11) and (12), we can formulate the following decision rule: We reject HTC

0 in favor of HTC
1 in (1)

at the j-th stage, 1 ≤ j ≤ K, if LTCj > 0 and LTCj∗ ≤ 0, j∗ = 1, . . . , j − 1. If HTC
0 is rejected at the

j-th stage, we decide in favor of the alternative HTR
1,∆, ∆ ∈ [0,∆0], at the k-th stage, j ≤ k ≤ K, in

(2), if LTRk > −∆. Note if LTRk > 0, we conclude superiority of T over R.
In analogy to (13), let us define the upper confidence sets on θd as

CIdk,II(θd) :=
{
y ∈ IR | −cvj(d) ≤ Zdj (y) for j = 1, . . . , k

}
, d = TC, TR, k = 1, . . . ,K.(16)

Again, using (10), each confidence set has a confidence coefficient of at least 1−α, being exactly 1−α
for k = K. The interval representation is given by

CIdk,II(θd) =
(
−∞, Udk

]
, d = TC, TR,(17)

where Udk = min{Ud(1), . . . , Ud(k)} and Ud(j) solves uniquely

Zdj [Ud(j)] = −cvj(d), j = 1, . . . , k, k = 1, . . . ,K.(18)

The two-sided confidence interval on θd at stage k is then defined as the intersection of the two
corresponding one-sided confidence intervals,

CIdk (θd) :=
[
Ldk, U

d
k

]
, d = TC, TR,(19)

where Ldk is from (14) and Udk is from (17), k = 1, . . . ,K. The confidence intervals are nested, that is,
CIdk+1(θd) ⊂ CIdk (θd), k = 1, . . . ,K − 1, d = TC, TR, and each confidence interval has a confidence
coefficient of at least 1− 2α, 0 < α < 1/2.

Denote Idk (θd) = [Ld(j), Ud(j)], see (15) and (18), the individual two-sided confidence interval
on θd at the k-stage. Then it holds,

CId1 (θd) = Id1 (θd) and CIdk (θd) = CIdk−1(θd) ∩ Idk (θd), k = 2, . . . ,K, d = TC, TR.(20)

Since CIdk ⊂ Idk , the interval Idk is another two-sided confidence interval with confidence coefficient
of at least 1 − 2α. The interval Idk results from the boundaries in stage k alone and will be always
nonempty. Therefore, Idk may be preferred to CIdk , see for instance Jennison and Turnbull (2000, p.
192) in their corresponding setting. Depending on the choice of α, the two-sided confidence interval
CIdk (θd) from (19) may be empty. But the probability to obtain an empty confidence interval CIdk (θd)
is bounded by 2α, d = TC, TR.

Instead of the implicitly defined confidence intervals, we provide approximative confidence in-
tervals in an explicit form. Their boundaries may be used as starting points in an iterative procedure
to determine the exact confidence intervals.

Let us approximate the central t-distributions involved in the combining pivotal quantities by
normal distributions with the same first two moments. The variance of a tν-variate is ν/(ν − 2). So
we may define the following weights at the i-th stage, i = 1, . . . ,K,

wTCi :=

√
νi(TC)− 2

νi(TC)[S2
Ti
/nTi + S2

Ci
/nCi ]

,(21)

provided νi(TC) > 2. Thus, the pivotal quantity zTCi (θTC) from (7) is approximated by

zTCi (θTC)appr = Φ−1
(
Φ
[
wTCi (X̄Ti − X̄Ci − θTC)

])
,(22)
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which is approximately N (0, 1)-distributed. Hence, the combining pivotal quantity ZTCj (θTC) from
(8) is approximated by

ZTCj (θTC)appr =
j∑
i=1

wTCi (X̄Ti − X̄Ci − θTC), j = 1, . . . ,K,(23)

which is approximately N (0, j)-distributed. Equating ZTCj (y)appr to cvj(TC) and to −cvj(TC) and
solving for y yields the following approximate individual confidence interval on θTC for j = 1, . . . ,K,

ITCj (θTC)appr =
j∑
i=1

wTCi (X̄Ti − X̄Ci)∑j
h=1w

TC
h

± cvj(TC)∑j
h=1w

TC
h

.(24)

By setting

CITC1 appr = ITC1 (θTC)appr and CITCk (θTC)appr = CITCk−1(θTC)appr ∩ ITCk (θTC)appr,(25)

k = 2, . . . ,K, we obtain approximations of the confidence intervals CITCk on θTC = µT − µC in (19).
Proceeding analogously, we get approximate confidence intervals on θTR = µT − µR.

4. Group Sequential Point Estimation

For ease of presentation, we describe the group sequential estimation of θTC = µT − µC . Esti-
mation of θTR = µT − µR follows by analogue considerations.

Recall from (8) that the combining statistic ZTCj (θTC) is N (0, j)-distributed with mode and

median 0. The maximum likelihood (ML) estimator θ̂(1)
TC(j) of θTC at stage j is given by

θ̂
(1)
TC(j) solves ZTCj

(
θ̂

(1)
TC(j)

)
= 0, j = 1, . . . ,K.(26)

The solution in (26) is unique.
The global p-value at stage j is

pTC(j) = 1− Φ
(
ZTCj (θTC)/

√
j
)
, j = 1, . . . ,K,(27)

and solving (27) for θTC such that pTC(j) = 1/2 yields θ̂(1)
TC(j) as solution. Since ZTCj (θ) is monotone

in θTC , we can conclude:

θ̂
(1)
TC(j) is median unbiased, j = 1, . . . ,K,(28)

see Cox and Hinkley (1974, p. 273), that is, the ML-estimator θ̂(1)
TC(j) lies with equal probability as

well below the parameter θTC as above θTC .
Equating the approximative combining statistic ZTCj (θTC)appr from (23) to 0 and solving for

θTC yields the midpoint of the approximative individual confidence interval ITCj (θTC)appr from (24)

as approximate median unbiased ML-estimator θ̂(2)
TC(j) of θTC at the j-th stage, given by

θ̂
(2)
TC(j) =

j∑
i=1

wTCi (X̄Ti − X̄Ci)∑j
h=1w

TC
h

, j = 1, . . . ,K,(29)

where the weights are defined in (21). Note that, in combining the mean differences of the stages, their
inverse estimated standard errors are used in the weights and not their inverse estimated variances
as known from the ’minimum variance unbiased’ estimator of the overall mean difference in meta-
analysis, see Hartung, Knapp, and Sinha (2008, Chapter 8). Weighted mean differences like θ̂(2)

TC(j)
from (29) are used in the generalized Cochran-Wald statistics considered by Hartung, Böckenhoff, and
Knapp (2003).
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Replacing in (29) the weights wTCi by

w̃TCi =

(
S2
Ti

nTi
+
S2
Ci

nCi

)−1

, i = 1, . . . ,K,(30)

we obtain the meta-analytical estimator θ̂(3)
TC(j) of θTC up to the j-th stage, j = 1, . . . ,K. For

θTR = µT − µR, the estimators θ̂(h)
TR(j) of θTR at stage j, h = 1, 2, 3, are defined analogously.

5. Sample Size Calculation and Adaptive Updating

Suppressing the subscript i and supposing known variances, let us consider the test statistic

DTR
0 (θTR) =

X̄T − X̄R − θTR√
σ2
T /nT + σ2

R/nR
∼ N (0, 1),(31)

which should be used for testing the point hypotheses H∗
0 : θTR = −∆ versus H∗

1 : θTR = θ∗TR > −∆
with fixed ∆ ∈ [0,∆0] and fixed value θ∗TR > −∆. So, DTR

0 (−∆) ∼ N (0, 1) under H∗
0 . Given level

α ∈ (0, 1) and desired power 1−βTR, βTR ∈ (0, 1), the required sample sizes nT and nR should satisfy

θ∗TR − (−∆)√
σ2
T /nT + σ2

R/nR
≥ Φ−1(1− α) + Φ−1(1− βTR).(32)

Let stage 0 denote a-priori information and external restrictions. After stage j, let θ̂TR(j) > −∆,
σ̂2
T (j), and σ̂2

R(j), j = 0, 1, . . . ,K−1, be reasonable estimates of their corresponding parameters based
on previous information of stages 0, 1, . . . , j. Consider the above test of the point hypotheses and
replace the unknown parameters by their estimates in (32), we obtain

θ̂TR(j) + ∆√
σ̂2
T (j)/nT + σ̂2

R(j)/nR
≥ Φ−1(1− α) + Φ−1(1− βTR), j = 0, . . . ,K − 1.(33)

Note that θ̂TR(j) + ∆ > 0 must be fulfilled.
By analogue considerations, with 1− βTC , βTC ∈ (0, 1), the desired power at θTC = θ̂TC(j) > 0

in the test problem (1), the required sample sizes nT and nC after stage j should satisfy

θ̂TC(j)√
σ̂2
T (j)/nT + σ̂2

C(j)/nC
≥ Φ−1(1− α) + Φ−1(1− βTC), j = 0, . . . ,K − 1,(34)

where θ̂TC(j) and σ̂2
C(j) are reasonable estimates of their corresponding parameters based on previous

information of stages 0, 1, . . . , j.
Let us define the sets of feasible sample sizes, k = 0, . . . ,K − 1,

ΓTR(κ, βTR,∆)k := {(nT , nR) ∈ IN × IN |nT and nR satisfy (33) for j = k and α = κ}(35)

ΓTC(κ, βTC)k := {(nT , nC) ∈ IN × IN |nT and nC satisfy (34) for j = k and α = κ} .(36)

For d = TC, TR, recall from (9) the event{
h∑
i=1

Yi ≤ cvh(d) for all h = 1, . . . ,K

}
,

and let us consider for an arbitrary, but fixed, stage j, j ∈ {1, . . . ,K}, the event
h∑
i=1

Yi ≤ cvh for h = 1, . . . , j − 1, and
j−1∑
i=1

Yi +
K∑
i=j

Yi ≤ cvK(d)

 .
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Note that
∑K
i=j Yi is N (0, K − (j − 1))-distributed and may be collapsed to

√
K − (j − 1)Yj having

the same distribution. Hence, we obtain

P


h∑
i=1

Yi ≤ cvh(d) for h = 1, . . . , j − 1, and
j−1∑
i=1

Yi +
√
K − (j − 1)Yj ≤ cvK(d)


≥ P

{
h∑
i=1

Yi ≤ cvh(d) for all h = 1, . . . ,K

}
.(37)

Let θ0
d denote a value for θd under the null-hypothesis Hd

0 , given as HTC
0 from (1) for d = TC

or as HTR
0,∆ from (2) for d = TR and ∆ ∈ [0,∆0] fixed. Let us assume we decide after stage j − 1 to

omit the interim analyses j up to K − 1. Then, we can assign the remaining weight
√
K − (j − 1) to

the next final study part, named stage (j,K), and build the final test statistic,

Zd(j,K)(θ
0
d) = Zdj−1(θ0

d) +
√
K − (j − 1) Φ−1

[
1− pd(j,K)(θ

0
d)
]
,(38)

where Zd(j,K)(θ
0
d) ∼

√
K N (0, 1) under Hd

0 , j = 1, . . . ,K, defining Zd0 = 0. We would then reject Hd
0

if Zd(j,K)(θ
0
d) > cvK(d), at level of at most α by (9) and (37).

Equating Zd(j,K)(θ
0
d) from (38) to cvK(d) and solving for pd(j,K)(θ

0
d) yields the projected p-value

p̂d(j,K)(θ
0
d) = 1− Φ

[
cvK(d)− Zdj−1(θ0

d)√
K − (j − 1)

]
, d = TC, TR, j = 1, . . . ,K,(39)

which is the probability of false rejection of the true null hypothesis in one next and final step given
the results of the first j− 1 stages. Thus, the projected p-value can be regarded as a conditional error
function. Consequently, we plan the final stage (j,K) at level

αd(j,K) = p̂d(j,K)(θ
0
d), d = TC, TR, j = 1, . . . ,K.(40)

Conditioned on θTC = θ̂TC(j − 1) > 0 and θTR = θ̂TR(j − 1) > −∆, the required sample sizes
MTj ,MCj , and MRj of the respective groups in the final stage (j,K), attaining power 1 − βTC for
d = TC in (1) and power 1− βTR for d = TR in (2), should be feasible and satisfy:

(MTj ,MCj ) ∈ ΓTC
(
p̂TC(j,K)(0), βTC

)
j−1

and(41)

(MTj ,MRj ) ∈ ΓTR
(
p̂TR(j,K)(−∆), βTR,∆

)
j−1

,(42)

see (35), (36), (39), (40).
If we do not want to finish the trial in this way and have in mind the originally planned K−(j−1)

further stages, we will choose the sample size in each group for stage j proportionally as

nTj ≈
MTj

K − j + 1
, nCj ≈

MCj

K − j + 1
, nRj ≈

MRj

K − j + 1
, j = 1, . . . ,K.(43)

Note that each sample size should be at least 2 in each stage.
Especially for j = 1:

nT1 ≈
MT1

K
, nC1 ≈

MC1

K
, and nR1 ≈

MR1

K
(44)

where, see (35) and (36),

(MT1 ,MC1) ∈ ΓTC (αTC , βTC)0 , αTC := 1− Φ(cvK(TC)/
√
K),

(MT1 ,MR1) ∈ ΓTR (αTR, βTR,∆)0 , αTR := 1− Φ(cvK(TR)/
√
K),

are feasible starting sample sizes.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS005) p.2047



Taking the initial sample sizes from (44) in all stages, we obtain formulae for sample size
calculation in non-adaptive group sequential trials.

We start with the above calculated initial sample sizes in the first stage of the study. Then,
using the above procedure, we reach the full power 1 − βTC , conditioned on θTC = θ̂TC(K − 1) > 0,
and 1 − βTR, conditioned on θTR = θ̂TR(K − 1) > −∆, latest in stage j = K. The total power, say
1− βTotal, of the hierarchical testing of (1) and (2), is then bounded by

1− βTC − βTR ≤ 1− βTotal ≤ min{1− βTC , 1− βTR}.(45)

Further, we may formally define the p-values, see (6), as suiting to the null-hypothesis that θd
is the true parameter, see Cox and Hinkley (1974, p. 221). So, we may apply the general result that
under the null-hypothesis p-values preserve their distribution and independence (for continuous null-
distributions) when sample sizes are chosen adaptively in a consecutive way, see for instance Brannath,
Posch, and Bauer (2002). All the above procedures are based on such p-values. Consequently, all the
statements remain valid when sample sizes are chosen adaptively as demonstrated in this section, see
also Hartung (2006).

6. Final remarks

In this paper, we have introduced an adaptive group-sequential analysis for a three-arm trial
including placebo for showing noninferiority of a new drug. In the talk, we discuss an example to
show the practical implication of this procedure. Slides of the talk are available from the authors
upon request.

In Section 2, we have defined positive one-sided critical values cvj , j = 1, . . . ,K, by the probabil-
ity condition (9). For a fixed number of stages K and an overall significance level α, we get an O’Brien
and Fleming (1979) design with constant critical values in (9), say cvj = consOBF (K,α), and a Pocock
(1977) design with monotone increasing critical values given as cvj =

√
j consPO(K,α), j = 1, . . . ,K,

see Hartung (2006), where also some of these one-sided critical values are tabulated. Designs with
intermediate values of the critical values are considered, for instance, in Jennison and Turnbull (2000).
Usually, two-sided critical values at level 2α for the corresponding symmetric two-sided tests are tabu-
lated in literature. For K ≥ 2, these two-sided critical values are slightly smaller than the one-sided
critical values at level α. At least for α ≤ 0.05, these two-sided critical values may be used here for
practical applications, see Jennison and Turnbull (2000, p. 192).

We have defined the two-sided confidence interval CIk, see (19), as the intersection of the one-
sided intervals CIk,I and CIk,II , see (14) and (17), and the confidence coefficient of CIk is at least
1−2α. If we use the critical values of the correspondent two-sided tests at level 2α, we get a two-sided
confidence interval, say CI0

k , that is slightly narrower than CIk for K ≥ 2, but has a confidence
coefficient of at least 1−2α as well. Moreover, the final CI0

K reaches a confidence coefficient of exactly
1− 2α.

In Section 5, we have computed sample sizes n using a normal approximation for applying t-
variates. Nearly exact values are achieved by correcting the sample size n with the variance of a
tn−1-variate, that is, replacing n by ncorr = n(n− 1)/(n− 3), n ≥ 4. The idea behind the correction
is the same as in replacing a t-variate by a normal variate with identical variance. However, computed
values have usually to be modified to fit some side conditions like block randomization schemes.
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