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1 Introduction

Although the seasonal adjustment of economic time series is a vast undertaking at statistical agencies
— such as the U.S. Census Bureau, Bureau of Labor Statistics, Statistics Canada, Bank of Spain,
and many others — most of production operates on univariate time series observed over a constant
sampling frequency, typically either monthly or quarterly. The statistical methods have developed
accordingly: X-11-ARIMA (Dagum, 1980) works with a single sampling frequency, applying the fixed

1 The advent of model-based approaches, such as in

X-11 filters to a forecast-extended time series
SEATS (Maravall and Caparello, 2004), also proceed by considering a single frequency. However,
changes in survey construction often change fundamental characteristics of an observed time series,
even altering the sampling frequency — from higher to lower or lower to higher. How are the seasonal
adjustment techniques to be modified in this situation?

The topic is somewhat related to the literature on benchmarking and reconciliation, which
however has tended to follow a nonparametric approach, with some noteworthy exceptions (such as
Durbin and Quenneville (1997)). There is also a substantial literature on time series analysis of mixed
frequency data (Zadrozny (1990) and Chen and Zadrozny (1998)). However, this literature focuses
on stationary data. What seems to be missing is a treatment of nonstationary time series observed
as stock or flow across two or more sampling frequencies, with regard to the following questions: how
does one identify a model? How is the model fitted? How does one do forecasting, imputation, and
signal extraction? How does one quantify the uncertainty attending these estimates?

Perhaps the most obvious approach is to use the Kalman filtering methodology to address
parameter estimation and projection calculations. One simply formulates the underlying process as
corresponding to the highest observed frequency, writing down the observation equations accordingly;
the mathematics of model fitting and state space smoothing then become equivalent to a missing value
problem. See Durbin and Quenneville (1997) and Durbin and Koopman (2001) for related material.

There are some drawbacks to this approach. First, state space methods require a substantial
programming effort; one may use off-the-shelf routines such as those offered through Ox (Doornik,

!This is an approximate view of the procedure — exact details can be found in Ladiray and Quenneville (2001).
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1998), but there are costs (both in terms of money and time spent learning the language) here as
well. Second, the correct quantification of uncertainty associated with estimation of fixed signals (e.g.,
seasonally adjusted components defined via the X-11 filters) requires a full knowledge of the projection
error covariance matrix. Some expertise and care is needed to produce these quantities from the state
space method, which typically will just output the projection error variances, or diagonal entries of
the error covariance matrix (see Koopman et al. (1999) and Durbin and Koopman (2001)). Third,
numerical tricks are typically utilized, such as setting the variance of a certain initial distribution to
be a numerical infinity (i.e., a large float) — this is called the diffuse initialization. This clouds the
simplicity of the actual optimal solution to the projection problem, and introduces potential numerical
inaccuracy.

There may be other disadvantages, but we are not aware of any. The advantages are numerous,
and are generally felt to outweigh any weaknesses: computational efficiency is foremost, as well as
flexibility and the power to handle many types of applications (Durbin and Koopman, 2001). Broadly
speaking, these applications mainly fall in the category of calculating Gaussian conditional expecta-
tions, or equivalently, minimum mean square error linear estimates of unknown stochastic quantities.
Following the language of Brockwell and Davis (1991), we refer to such conditional expectations as
projections. Examples of projections include forecasts, missing value imputations, and signal extrac-
tions. The mathematical results of this paper include projection formulae for the mixed frequency
situation described above. Depending on one’s appetency regarding state space methods, the formulas
may be viewed as a precise mathematical foundation for smoothing methods, or as a straight-forward
matrix-based method for computing projections when recourse to the Kalman filter is infeasible.

Our results demonstrate the key importance of ubiquitous — but commonly unmentioned — initial
value conditions on the nonstationary stochastic process; without these assumptions, all projection
calculations will depend upon nuisance parameters that lie beyond the scope of typical time series
models. This observation pertains to both the log Gaussian likelihood — and hence to model fitting —
and to projection results proper, as delineated in Sections 2 and 3 respectively. In Section 4 we proceed
with a motivating case study, an inventory series of food products, available as a mixed sample of
quarterly and monthly frequencies. We demonstrate the modified X-11 seasonal adjustment procedure
on this case, producing estimates at the full data span at the highest sampling frequency, and present
our conclusions.

2 Modeling Mixed Frequency Data

2.1 Time Series Data at Multiple Sampling Frequencies

We now discuss our basic working assumptions. The available data consists of either stock or flow time
series observations available at two or more frequencies. This data has the following characteristics
by assumption:

e The data occurs with multiple sampling frequencies.
e The data at each sampling frequency is difference-stationary.
e The observed data is either a stock or a flow.

e [t is possible — in the flow case — that some time points may have several observations, one at
each sampling frequency.

The observed data can then be written as a column vector. The exact sequencing of observations is
not unique in the case that there are multiple observations at a given time. For example, suppose
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that a flow series is observed at quarterly and monthly frequencies for ten years. The March time
point will have a quarterly number — corresponding to the months of January, February, and March
— as well as a monthly number. Note that this illustration is meaningless for a stock series, since the
March quarterly value is identical with the March monthly value.

The key assumption of our method is that all the observations arise as a linear combination
of an unobserved highest frequency data vector, which we will call Y = (Y1,Ys,---,Y;)". This is a
feasible assumption, because we assume that our mixed sample is either a stock or a flow. Lower
frequency stock values are obtained from the highest frequency stock value by an identity mapping.
But for flows, the lower frequency values are obtained by aggregation of the highest frequency. Hence
the observed data takes the form JY', where J is a selection matrix that is described below.

Letting {Y;} denote the sequence of values for the highest frequency time series (as either stock
or flow), we suppose that it is difference stationary such that W; = §(B)Y; is mean zero and covariance
stationary, where §(z) is a degree d unit-root polynomial. Let the autocovariance function (ACF) of
{W;} be denoted by 7. We can conveniently represent Y; in terms of W; and d so-called initial values,
using results from Bell (1984). Actually, we extend this method below to consider both backward
differencing and forward differencing at the same time.

The highest frequency process {Y;} will also consist of fixed effects, such as calendar and trading
day effects. We proceed by specifying a model for {Y;}, noting that models for all other sampling
frequencies are implied via the sampling relations, although the resulting models may no longer belong
to recognizable model classes. We next proceed to discuss estimation of a given specified model.

2.2 Model Estimation

So we can write the observed data as X = JY with J given by ones and zeros, where {Y;} is described
above. The high-frequency vector Y has length n, but the observed data has length m, so J is m X n.
For our method, we must have at least d observations available on the high-frequency portion of the
data, which may come at arbitrary points in time. Let us write our observed data into a column vector
X such that any d of these high-frequency observations occur as the first d components of X. It is
immediate that the first d rows of J have the form [140] P for some n x n dimensional permutation
matrix P. This matrix maps the corresponding components of Y into the first d slots of X. Assuming
for now that Y has mean zero — the case of nonzero mean is treated in the next subsection — the log
Gaussian likelihood multiplied by —2 is given by

1) X'(JZyJ) X +log |Jy J'|

up to irrelevant constants. Note that this objective function is derived from the Gaussian joint
probability density for the undifferenced data X = JY. This contrasts with the single frequency case
where one works with differenced data. Actually, the validity of using the likelihood of differenced data
is contingent on a factorization of the likelihood function, which in turn depends on the orthogonality
of initial values with {W;}. But in the multiple frequency case things are not so simple. First, it may
not be clear how to do differencing at all — since differencing typically requires d contiguous values in
JY of the same frequency. There is no reason to suppose this contiguity in JY exists. Second, the
factorization of the likelihood is far from obvious.

However, we may guess that a differencing matrix does exist that reduces X to stationarity,
by the following reasoning. Nonstationary effects include deterministic (e.g., polynomial functions)
as well as stochastic phenomena; the former will be annihilated by differencing, whereas the latter
are reduced to a mean zero covariance stationary process. Hence if we can identify a generalized
differencing matrix that reduces the deterministic portion to zero, we may suppose that it will also
reduce the stochastic portion to stationarity. If we have n observations — possibly at irregular, arbitrary
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time points — of d linearly independent time-varying functions, there exists a n — d by n dimensional
matrix that annihilates all of the corresponding column vectors. This matrix will be the generalized
differencing matrix; we next proceed to describe its calculation.

Now since Y is the highest frequency (unobserved) data vector, it is differenced to stationarity
by a n — d X n dimensional matrix A:

d0¢ -+ 01 do O
. .. . .0
0 ¢ -+ 61 o
Then W = AY is mean zero and has a Toeplitz covariance matrix, since {W;} is covariance stationary.
Augment A with the first d rows of the permutation matrix P, and call this A:

@ A_|Ma0P

A

Then applying AtoY yields a vector with the first d components given by Y, followed by W, where
Y, = [140]PY. These will be called the initial values, by analogy with the treatment of Bell (1984)
and McElroy (2008).

The following result establishes invertibility of ﬁ, and describes the construction of a differencing
matrix D, that when applied to X yields linear combinations of {W;}, such that DX has an invertible
covariance matrix.

Theorem 1 Suppose that the mized sample X can be written as X = JY for a high frequency sample
Y, which is difference stationary with degree d differencing polynomial 6(B). Also let P be defined
such that [140]P is the first d rows of J. Then the matriz A defined in (2) is invertible, and

(3) [AB]=[01y-da JA™
is well-defined. It also follows that D = [—A 1,,,_4] differences X in the sense that
(4) DX =[-A1l,,_4)X = BW.

If Y, is uncorrelated with W and ¥, is the covariance matriz of Yy, then —2 times the log Gaussian
likelihood can be written as

VS + log |34
(5) +(DX)(BEwB') DX +log|BSwB|,

up to irrelevant constants.

This result gives us a practical ability to compute the log likelihood. Since no parameters enter
into X, it can be ignored and we focus on minimizing the quadratic form in DX. In this way the
maximum likelihood estimates (mles) can be obtained.

2.3 Model Specification, Fitting, and Testing

We now provide a more nuanced discussion of model fitting for mixed frequency data. Let us first
suppose that the aggregation relations between different frequencies hold exactly, as described above.
It is clear that all covariance structure for lower frequencies is generated by a specified covariance
structure at the higher frequencies. In other words, we may consider specifying a model for the
highest frequency data, and this automatically determines an implied model for all lower frequencies.
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Now if the high frequency data follows an ARMA model, the lower frequencies need not follow this
same specification. They may not even be ARMA. But we still know how to compute their covariances,
and in this sense their model is determined.

Fitting of the model proceeds via maximum likelihood estimation, as described above. We
provide a bit more detail below. But the fit can be checked by examining the time series residuals —
also defined below — for serial correlation. One could also use AIC values based on the likelihoods of
competing models, in order to choose between them.

Now a reasonable model should include regression effects. It is easiest to specify these at the
highest frequency, knowing that some of them may not even manifest at lower frequencies. So suppose
that the high frequency unobserved data vector is Y = XG + Y, with parameter vector # and design
matrix X. Then our observed data follows

X =JY =JXB+ JY.

So the new design matrix for the observed mixed data is JX. This will automatically account for
elimination of unobserved effects at lower frequencies (the corresponding rows and columns of JX will
then just be zeroed out), and the likelihood can be adjusted accordingly.

Once the mles are determined, we can assess model fit via the time series residuals defined via

~ -1/2 o
e=(BSwB) " (DX - BAXH),
where the mles for parameters are utilized, hence the notation iw and B If the model is correctly
specified, and all mles were to converge to their asymptotic values, the above vector would be iid
standard normal. Plotting these residuals, along with their sample ACFs, can allow one to assess
model fit. If a problem is found, we can try a new model and repeat the whole procedure.

Next, we must address the problem of flow aggregation and the logarithmic transformation. We
describe the problem with monthly (y1, y2, and y3) and quarterly (z;) data. In the original scale,
the flow property states that x1 = y; + y2 + y3, when x1 corresponds to the quarter comprising the
months described by yi1,y2,y3. Suppose that we wish to model the data in logarithms, this being
a sensible variance-stabilizing transform. Denote the log-transformed variables with capital letters.
Then X; # Y] + Y, + Y3, which is a bother. Note that this problem does not arise for stocks (where
x1 = y3 maps to X; = Y3 without hindrance).

By Jensen’s inequality, we always have X; > log3 + (Y7 + Y2 + Y3)/3. More precisely, we can
write

\% N N 2 1/3 2 1/3 2 1/3
l%m:r+2+3+bg<y1) +(y2> +<ya) _
3 Y2Y3 Y1y3 Y1y2

This latter term is bounded below by log(3), and in practice is close to the lower bound when y1, y2, y3
have values reasonably close to one another. This analysis indicates that we might write X = JY +
where the rows of J that do flow aggregation have values of 1/3 (instead of one in the original data
scale), and p = log(3) and ¢ is a vector of zeroes and ones. The approximation is hopefully small in
practice, such that one proceeds with the algorithm as if it were exact. Furthermore, if any quarter
appears alongside with all its constituent months, we may strike out that quarter’s row since it really
imparts no additional information over the three months. Then each quarter that appears contains at
most two months that are available elsewhere in the sample, so that at least one month that makes
up the quarter is opaque (i.e., unknown). We might then imagine altering this one value slightly, such
that X = JY + e holds exactly. Statistically, such a slightly mollified Y will follow the same model
as the original Y, since there is little variation.
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As for pe, this will be subsumed in the regression effects JX if a constant is already included
— otherwise, it can be added in. When the regression parameter for mean effect is determined, it is
equal to the real mean effect plus log(3), i.e., we should subtract out log(3). In this way we can handle
flow data in logs.

3 Projection: Forecasting and Signal Extraction

Many applications can also be handled using the results of Section 2. If we are interested in optimal
estimates of past or future values, i.e., backcasts and forecasts, then this can be solved through the
theory of projections. Missing data, i.e., omissions in the observed data JY at any frequency, is
handled with the same theory. More generally, any linear function of the high frequency vector Y can
be optimally estimated. The general theory is well-known, going back to Parzen (1961); its application
to the particular case of mixed frequency nonstationary time series data is given below.

Consider a vector of “target” quantities Z, written as a column vector of length r, which can be
expressed as a linear combination of the highest frequency data series {Y;}. This means there is arxn
matrix I such that Z = I'Y represents the target. This target is a linear combination of high frequency
variables that we wish to optimally estimate. Different choices of I allow for backcasting, forecasting,
imputation (missing values), and signal extraction. Moreover, this can be considered at any frequency
or combination of frequencies (so long as they are lower frequency than the {Y;} process). When
we speak of signal extraction, we refer to a signal defined as a fixed filter of the data rather than a
stochastic component. For example, the linearization of the X-11 filter defines a target signal with
I given by a matrix with rows given by the coefficients of the moving average filter, appropriately
shifted.

We give further illustrations of projections — forecasting, imputation, signal extraction, etc. —
following our main theorem. All these problems have in common that one seeks to estimate IY
optimally from JY. Parzen (1961) provides a general formula for this problem, and we can get a
particular solution in our context that is computable without knowledge of nuisance values.

Theorem 2 Under the assumption that Y, and W are uncorrelated, the formula for the optimal
estimate of IY from JY is

6) IV = ISy J'S X = IA™!

Xy
SwB(BSwB')'DX |’
where X, = [14 0] X s the first d values of X. The covariance matriz of the error is

|00

/ n—1 AT
0 Yw —YXwB(BXwB') BXw

IA

Remark 1 The first formula in (6) is the general expression from Parzen (1961), but the second
formula is practicable for implementation. The estimate IY is computable from quantities appearing
in the algorithm of Section 2, and hence are readily available. Since the error covariance matrix
contains no nuisance values, it is readily computed from I. Its diagonal gives the mean squared error.

Remark 2 In the case that I is an identity matrix, we obtain a vector of forecasts, backcasts, and
imputations for Y from X. Also in the special case that I = J, we immediately recover X, as is seen
from the first formula of (6).

We now proceed to work through some applications. The first thing to note is that in practice 1
is determined first — which determines the exact length needed for Y — which in turn will determine J.
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We construct I and J such that the same vector Y is featured in both Z and X. That is, if [ isr xn
and requires a certain span of the {Y;} series for its definition, some of these Y; variables may not be
featured anywhere in the available data matrix X. In that case, the corresponding column of J will
have all zeroes. For example, suppose we have only a single frequency and the data is X = [Y7, Yg]/,
but our target is Z = Y. Then Y = [Yp, Y1, Ys] and I = [1,0,0], whereas

leo 10]'

0 01

This is a backcasting problem, which is only solvable when d < 1. More generally, I and J will
be constructed by first building the Y vector out of the union of all {Y;} variables featured in the
definitions of Z and X.

The main application we have interest in occurs where we wish to compute a signal of the form
> VY for a finite string of filter coeflicients {¢;}. Suppose that these form a two-sided symmetric
filter of total length 2¢g 4+ 1. This occurs, for example, with X-11 seasonal adjustment filters — if we
linearly approximate the additive X-11 procedure with a linear filter. If we desire a total of r time

points of the seasonally adjusted series, we construct an r x r +2q dimensional matrix with row entries
given by the filter coefficients:

P |
0 e ahg e WP e g

Then we have Z = UY where n = r + 2¢. In terms of Theorem 2, I = ¥, and we obtain our estimate
and its MSE by plugging into the stated formulas.

More precisely, suppose that our target is to produce filtered values of the highest available
frequency, for every such time point that occurs in our sample X. Since X = JY and J is m X n,
this means that r = n, and ¥ has n rows and n + 2¢ columns. We must extend Y to apply the

Theorem 2. So let ¥ = Yogi1, Y0,Y, Yoit, -+, Yuigl', where the middle portion is just our
original Y = [Y3,---,Y,]. We must modify .J accordingly, by appending columns of zeroes to its front
and back:

J=[0J0],

where the number of zero columns is ¢ fore and aft. Then X = J )7, and we run the method on this
new J and extended Y. This will change some of the formulas (n gets updated to n + 2¢, etc.). Then
the application of Theorem 2 is immediate, and we obtain filtered values at the highest frequency.

4 Application to Series U11SFI

We are interested in applying these techniques to time series under production at the U.S. Census Bu-
reau. Our example is a stock time series available at a monthly frequency. The series is “Food Product
Finished Goods Inventory,” denoted by U11SFI, for the dates January, 1992 through December, 2005.
Now this series is not actually mixed frequency: we will generate a mixed quarterly-monthly version
of it, and analyze the result. Projections from this mixed sample can then be compared to truth,
and the mixed frequency seasonal adjustments can also be compared to straight X-11 applied to the
original monthly series. We will also work with a regression-adjusted version of the series, using X-12-
ARIMA initially to remove an additive outlier (no other fixed effects, such as trading day or holiday,
were found to exist). Although the regression estimation approach of section 2.3 could be utilized,
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Figure 1: The left panel displays the mixed frequency sample along with the original monthly sample
of U11SFI, whereas the right panel display the ACF of the time series residuals from the fitted mixed
frequency airline model.

this would introduce extra error at the model fitting stage — to isolate the X-11 filtering aspect and
facilitate comparisons with truth, we presume that all fixed effects have been satisfactorily removed.

In order to produce the mixed frequency sample, we will suppose that the last five full years
of monthly observations are available, but prior to this all data is quarterly?. Then X consists of
the last 60 monthly values, followed by all the quarterly values in order, for all but the last 5 years;
see Figure 1. Now although a Box-Jenkins airline model (Box and Jenkins, 1976) — deemed best by
X-12-ARIMA - fitted to the logged monthly data produced nonseasonal and seasonal moving average
parameter mles of —.08 and .61 respectively, the same model fitted to the mixed frequency sample
yielded .77 and .78 respectively. Note that less information is present in the mixed frequency sample,
and moreover the sampled airline model is not optimal; future research must examine the behavior
of mles via simulation studies. The time series residuals display some serial structure, as is evident
from the ACF plot in Figure 1. Although the original mles for the monthly series yield time series
residuals with less structure, in practice these parameters are unavailable, and one must utilize the
mles derived from the mixed frequency sample.

Using these mles, we then calculate the quantities in Theorem 2 to obtain the X-11 seasonal
adjustment®. We are primarily interested in the values for the monthly segment, but values for the
quarterly portion of the mixed sample are produced by our algorithm as well. In Figure 2 we have
the mixed sample plotted with the projections, i.e., the forecasts, backcasts, and imputations. Also
overlaid are the monthly seasonal adjustment estimates. It is evident that the forecasts and backcasts
are heavily based on the pattern present in the five years of monthly data; for the sweep of years
corresponding to quarterly data, the projections effect an interpolation utilizing the inferred monthly
pattern.

A curious “stationary seasonal” pattern is evident in the non-seasonal component: there is a
quasi-periodicity of 3 months, or every quarter, which does not persist over long stretches of time.
A spectral estimate for this component shows residual power at the quarterly frequency, manifested

2We also did an analysis with only two full years of monthly data, but this seemed to be an insufficient span to
generate reasonable results; cf. further discussion below.

3The specification in this case was a 3 x 3 and 3 x 5 for the seasonal moving averages, and a Henderson 9, all for the
monthly frequency.
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Figure 2: The left panel displays the mixed frequency sample, full projections, and seasonally adjusted
data. The right panel displays the same information without the projections.

as an inverted “W”-shape — this is not uncommon, corresponding to insufficient smoothing for the
quarterly frequency. Modifying the smoothing patterns of the X-11 filter did not ameliorate the
situation, although better modeling of the quarterly aspect of the mixed frequency sample — such that
the cyclical correlation in the right panel of Figure 1 is removed — would ensure that the projections in
Theorem 2 more properly account for the data’s structure, thereby wiping out the quarterly cycle in
the seasonal adjustment. One can see this assertion is true by examining the segment of the seasonal
adjustment corresponding to monthly values: there the quarterly cyclicality is much reduced.

MSEs can also be easily produced. We first display the projection MSEs for the monthly series
in the left panel of Figure 3; note that the central portion has the value zero, along with every third
value in the quarterly span of the mixed sample — of course these values are known and the error is
zero. Uncertainty rises predictably at the boundaries of the sample. Finally, the right panel of Figure
3 gives the MSEs for the X-11 seasonal adjustment estimates, the asymmetric structure following
the pattern for the projections. The oscillatory and step-function characteristics of these plots are a
familiar feature of finite-sample MSEs for time series projections (cf. McElroy (2008)).

We also examined the same series with a monthly span of two years, rather than five years. The
quarterly cycle phenomenon was much more pronounced in this case (we do not present results here).
Observe that only 24 — 13 = 11 monthly observations are available in this case, after differencing,
to determine the stationary monthly time series structure — this is not much data to fit an ARIMA
model. With five years we have an effective sample of 47, and the problem is greatly diminished. This
suggests that our methodology is likely to produce unsatisfactory results when the span of monthly
data is short, even when a substantial quantity of quarterly data is available.
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RESUME (ABSTRACT)

An important practical problem for statistical agencies that publish economic data is the seasonal
adjustment of mized frequency stock and flow time series. This may arise in practice due to changes
in funding of a particular survey; for example, a series published at a quarterly frequency in the past
might transition to a monthly publication schedule. We demonstrate that the X-12-ARIMA method
can be applied to such mized frequency data, by deriving formulas for conditional expectations that can
be applied to forecasting problems. Moreover, standard errors are easily produced for this method as a
by-product of the calculations. The method is illustrated on a mized frequency time series.



