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1 Introduction

Models for multivariate extremes are a mainstay in statistical modelling of risk. Introductions to

the topic can be found in Kotz and Nadarajah (2000, §2–3), Coles (2001, §8), Beirlant et al. (2004,

§8–9), and Castillo et al. (2005, §11). Mikosch (2005) overviews several issues arising in modelling

multivariate extremes, and recently there has been a renewed interest in developing approaches able

to cope with such difficulties (Boldi and Davison, 2007; Zhang et al., 2008; Ramos and Ledford,

2009; Stephenson, 2009; Cooley et al., 2010; Gudendorf and Segers, 2011). Recent advances have also

been driven by an increasing need in several sciences to model joint tail phenomena, ranging from

environmetrics (Dupuis, 2005), to oceanography (Stephenson, 2009).

An important concept in multivariate extreme value modelling is the so-called spectral measure,

which controls the degree of dependence of the extremes of different variables. This measure must

satisfy certain marginal moment constraints, so it is awkward both to devise suitable models and to find

estimators that obey the constraints. A variety of parametric models have been proposed, for small to

moderate numbers of dimensions (Tawn, 1988; Coles and Tawn, 1991; Kotz and Nadarajah, 2000), and

others are currently under development. Boldi and Davison (2007) introduced a constrained mixture

of Dirichlet distributions which is weakly dense in the class of all possible spectral measures, and

Einmahl and Segers (2009) recently proposed a nonparametric estimator that imposes the marginal

constraints using empirical likelihood (Owen, 1988, 2001).

Most available models are one-sample-based, but just as there are efficiency gains from using the

threshold exceedance rather than the block maximum approach to extremal modelling (Coles, 2001),

it seems less wasteful of data to attempt to combine the models for the individual subpopulations.

The modelling discussed here allows us to estimate each of the spectral distribution functions Hκ using

all K samples. Beyond the obvious efficiency gains, this borrowing of strength also allows improved

estimation for subpopulations whose samples are too small to be individually informative about their

tails.

The exposition below is largely based on Carvalho and Davison (2011), and more details on the

statistical methodology and its applications can be found there.

2 Modelling K-Sample Multivariate Extremes

2.1 Multivariate Extremes and Point Processes

We begin with D-dimensional extreme value distributions specified in the classical one-sample frame-

work. Let Z1, Z2, . . . be independent and identically distributed vectors of continuous random variables

on RD whose distribution function F lies in the joint domain of attraction of an extreme value distri-

bution G.
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Without loss of generality, suppose that F has unit Fréchet marginal distributions, i.e., exp(−1/z),

for z > 0. Pickands’ (1981) representation theorem asserts that the limiting distribution of the stan-

dardised maximum Mn = n−1 max{Z1, . . . , Zn} may be written as G(z) = exp{−V (z)}, where

V (z) = D

∫
∆D

max{w1/z1, . . . , wD/zD} dH(w).

Here H represents the so-called spectral measure defined on the unit simplex in RD, i.e., ∆D =
{
w ∈

RD+ :
∑D

i=1wi = 1, w = (w1, . . . , wD)
}

. Further connections between the exponential measure V and

the spectral distribution function H can be found in Coles and Tawn (1991) or Beirlant et al. (2004,

§8.2). The distribution H determines the interaction between joint extremes, but must satisfy the

normalization and moment conditions

(1)

∫
∆D

dH(w) = 1,

∫
∆D

wdH(w) = D−11D,

where 1D is the D-vector of ones.

A pseudo-polar transformation is helpful in understanding H: if we map the joint extremal

data e1, . . . , eD, which have unit Fréchet marginal distributions, into the pseudo-angular coordinates

w1 = e1/r, . . . , wD = eD/r, with pseudo-radius r = e1 + · · ·+ eD, then the directional part w1, . . . , wD
has measure H. The limiting cases of independence and dependence in the two-dimensional case

illustrate this: if extreme values of the two variables tend to occur individually then the mass of H

is concentrated close to the limits 0 and 1, whereas if the extremes tend to occur together then H

places most of its mass near w = 1/2. This pseudo-polar representation also arises in a point process

characterization. As n → ∞, the counting process of the rescaled standard Fréchet observations,

Nn = {n−1Zi : i = 1, . . . , n}, converges in distribution to a Poisson process whose intensity measure

on RD+ factorizes as

Λ(dz) =
dr

r2
×D dH(w), r > 0, w ∈ ∆D.

These pseudo-polar representations generalise to the K-sample case. Suppose that we have inde-

pendent sets of observations {wκ1, . . . , wκnκ} from K unknown spectral distributions (H0, . . . ,HK−1).

The measures must satisfy the normalization and moment constraints

(2)



∫
∆D

dH0(w) = 1,
∫

∆D
wdH0(w) = D−11D,∫

∆D
dH1(w) = 1,

∫
∆D

wdH1(w) = D−11D,
...

...∫
∆D

dHK−1(w) = 1,
∫

∆D
wdHK−1(w) = D−11D.

A similar point process representation can be given for the K-sample case by replacing the

univariate point process with a multivariate point process. For each sample κ, we now suppose that

Z1κ, Z2κ, . . . are sequences of independent and identically distributed vectors on RD, with a distribution

function Fκ in the joint domain of attraction of G. The counting process for the K-sample problem

may be denoted by Nn = (Nn0 , . . . , NnK−1), where n = (n0, . . . , nK−1) and

Nκ = {n−1
κ Ziκ : i = 1, . . . , nκ}, κ = 0, . . . ,K − 1.
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The process Nn converges to a multivariate Poisson process on RKD+ with intensity process

Λ = (Λ0, . . . ,ΛK−1), as min{n0, . . . , nK−1} → ∞, where each component of the intensity process

factorizes along the radial and directional parts, respective to each sample, viz.:

Λκ(dz) =
drκ
r2
κ

×D dHκ(w), κ = 0, . . . ,K − 1, rκ > 0, w ∈ ∆D.

The next section introduces the spectral density ratio model for modelling K-sample multivariate

extremes. Just as the point process characterization for one-sample multivariate extremes avoids the

wastefulness of data implied by block maximum strategies, our model enables more effective use of

the available data in the K-sample framework.

2.2 A Spectral Density Ratio Model for Multivariate Extremes

Later we focus our attention on the simplex ∆D on which spectral measures are defined, but for now

we let Hκ denote any distribution function. Our interest lies in the measures (H0, . . . ,HK−1), which

are linked through a positive function gκ with known functional form

(3)

{
(H0, . . . ,HK−1) :

dHκ(w)

dH0(w)
= g(w, γκ), for some g(w, γκ) > 0; κ = 0, . . . ,K − 1

}
.

Here γ = (γ1, . . . , γK−1)T represents a q-vector of parameters, and we set g(w, γ0) = 1 for identifiability.

This specification is common to many models (Efron and Tibshirani, 1996; Qin and Zhang, 1997;

Fokianos et al., 2001; Fokianos, 2004; Cheng et al., 2009). Under (3) the distributions Hκ are left

unspecified but related through a known weight function. The measure H0 acts as a reference from

which the other K − 1 measures are obtained, through a distortion controlled by g and γκ. Some

examples are given below, where we take the two-sample case for ease of notation. Let g(w;α, β) =

exp{α + βc(w)}, where α is a scale parameter, β a is p × 1 vector parameter, and c(w) is a known

distortion function, such as c(w) = w. We then obtain a model where the log-ratio of the densities

is linear in the parameters, log{dH1(w)/dH0(w)} = α + βw. The logistic regression model can be

derived by applying Bayes’ theorem, and the multinomial logistic regression model arises for p > 1. A

property of such models known as independence of irrelevant alternatives implies that the inference

is independent of the baseline dH0 (Fokianos, 2004). This type of semiparametric approach provides

gains in efficiency by estimating each density dHκ on the basis of the entire sample (Gilbert et al.,

1999; Fokianos, 2004; Kedem et al., 2009). Specification (3) can also be used to construct density

estimates, by taking g(w;α, β) = exp{α+ βs(w)}, with s(w) denoting a vector of sufficient statistics.

Efron and Tibshirani (1996) used this representation to estimate a density dH1/dw on the basis of a

carrier density dH0/dw obtained by nonparametric kernel procedures, the idea being that dH0 should

control local adaptation to the data, while the exponential term exp{α+βs(w)} should capture global

features.

Specification (3) also turns out to be natural for modelling the K-sample multivariate extreme

value framework discussed in §2.1, with the constraints (2) restated as

(4)



∫
∆D

g(w, γ0)dH0(w) = 1,
∫

∆D
wg(w, γ0)dH0(w) = D−11D,∫

∆D
g(w, γ1)dH0(w) = 1,

∫
∆D

wg(w, γ1)dH0(w) = D−11D,
...

...∫
∆D

g(w, γK−1)dH0(w) = 1,
∫

∆D
wg(w, γK−1)dH0(w) = D−11D.
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We suppress the dependence of α on β, and vice versa, but it should be noted in what follows

that the normalization constraints in (4) force these parameters to be associated, and in particular

if p = 1 they need to be perfectly correlated. Below we refer to the general semiparametric setting

(3), subject to the normalization and marginal moment constraints (4), as the spectral density ratio

model. We propose to fit it through empirical likelihood methods (Owen, 1988, 2001).

2.3 Estimation

Let v = {v1, . . . , vn} denote the combined sample {w01, . . . , w0n0 , . . . , w(K−1)1, . . . , w(K−1)nK−1
} from

all K unknown spectral distributions Hκ. The likelihood of the K-sample multivariate extreme value

problem under (3) is

L (γ,H0) =

K−1∏
k=0

nk∏
j=1

dHk(wkj) =

n∏
i=1

pi

K−1∏
k=1

nk∏
j=1

g(wkj , γk),

where pi = dH0(vi) = H0(v+
i )−H0(v−i ) denotes the size of the jump of the baseline spectral distribution

function at the observed vi.

We restrict our attention to the tilting function g(w, γκ) = exp{ακ + βκc(w)}, where γκ =

(ακ, βκ); for identifiability we set α0 = β0 = 0. The loglikelihood is thus

(5) `(γ,H0) =
n∑
i=1

log(pi) +
K−1∑
k=1

nk∑
j=1

{αk + βkc(wkj)}.

Empirical likelihood estimation of the spectral density ratio model involves maximizing ` with respect

to pi, for a fixed γ, subject to the empirical versions of constraints (4), conveniently rewritten as

(6)

pi ≥ 0, vi ∈ ∆D

n∑
i=1

pi = 1,

n∑
i=1

pi
{
vi −D−11D

}
= 0,

n∑
i=1

pi{g(vi, γ1)− 1} = 0,

n∑
i=1

pi{vig(vi, γ1)−D−11D} = 0,

...
...

n∑
i=1

pi{g(vi, γK−1)− 1} = 0,
n∑
i=1

pi{vig(vi, γK−1)−D−11D} = 0.

Using an approach similar to that of Qin and Lawless (1994), it can be shown that if we use Lagrange

multiplier procedures to profile pi with the normalization and marginal moment constraints (6), then

the jump size for the baseline spectral distribution function can be written as

(7) pi =
1

n0

1

1 +
∑K−1

k=1 ρkg(vi, γk) + δTM(vi, γ)
,

where ρκ = nκ/n0,

(8) M(v, γ) = G(v, γ)⊗ (v −D−11D),
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and G(v, γ) = (1, g1(v, γ1), . . . , gK−1(v, γK−1))T. Here and below, δ = (δ0, . . . , δK−1)T denotes the

Lagrange multipliers corresponding to the marginal moment constraints, which are determined through

the conditions

(9)
1

n0

n∑
i=1

vig(vi, γκ)−D−11D

1 +
∑K−1

k=1 ρkg(vi, γk) + δTM(vi, γ)
= 0, κ = 0, . . . ,K − 1.

Thus apart from a constant the profiled empirical loglikelihood for γ can be written as

(10) `p(γ) = −
n∑
i=1

log

{
1 +

K−1∑
k=1

ρkg(vi, γk) + δTM(vi, γ)

}
+

K−1∑
k=0

nk∑
j=0

{αk + βkc(wkj)},

and so the semiparametric empirical likelihood estimator γ̂ = arg maxγ `p(γ) of the spectral density

ratio model can be obtained by combining (9) with the score equations

(11)

∂`p
∂ακ

= −
n∑
i=1

ρκg(vi, γκ) + δTMακ(vi, γ)

1 +
∑K−1

k=1 ρkg(vi, γk) + δTM(vi, γ)
+ nκ = 0,

∂`p
∂βκ

= −
n∑
i=1

ρκc(wκj)g(vi, γκ) + δTMβκ(vi, γ)

1 +
∑K−1

k=1 ρkg(vi, γk) + δTM(vi, γ)
+

nκ∑
j=0

c(wκj) = 0, κ = 0, . . . ,K − 1.

Here, Mακ and Mβκ represent the partial derivatives of the moment estimating function (8). The

existence of the semiparametric likelihood estimates γ̂ is a corollary of Lemma 1 in Qin and Lawless

(1994) which states that under suitable regularity conditions the semiparametric empirical likelihood

estimator lies in the interior of the ball ||γ − γo|| ≤ n−1/3, and thus is centred on the true value γo, as

n→∞.

On using the estimates obtained from the score equations (11), the maximum likelihood estima-

tor of the size of the jump of the baseline spectral density function turns out to be

p̂i =
1

1 +
∑K−1

k=1 ρkg(vi, γ̂k) + δ̂TM(vi, γ̂)
,

so the maximum likelihood estimator of the baseline spectral distribution function is

(12)

Ĥ0(w) =

n∑
i=1

p̂iI(vi ≤ w)

=
1

n0

n∑
i=1

1

1 +
∑K−1

k=1 ρkg(vi, γ̂k) + δ̂TM(vi, γ̂)
I(vi ≤ w),

and for κ = 1, . . . ,K − 1 the other spectral spectral distribution functions are estimated as

(13)

Ĥκ(w) =

n∑
i=1

p̂ig(vi, γ̂k)I(vi ≤ w)

=
1

n0

n∑
i=1

g(vi, γ̂k)

1 +
∑K−1

k=1 ρkg(vi, γ̂k) + δ̂TM(vi, γ̂)
I(vi ≤ w).
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3 Numerical Experiments

3.1 A Two-Sample Bivariate Spectral Density Ratio Model

To model the spectral density corresponding to each subpopulation, we consider two symmetric Beta

distributions,

(14)

dH0(w) = 1
B(φ0)w

φ0−1(1− w)φ0−1dw, φ0 > 0,

dH1(w) = 1
B(φ1)w

φ1−1(1− w)φ1−1dw, φ1 > 0,

where B(φ) =
∫ 1

0 {u(1− u)}φ−1du. The mean for each spectral density equals 1/2, so that constraints

(4) are satisfied. Using the distortion function c(w) = log{w(1− w)} we can rewrite (14) as
dH0(w) = exp{a0 + b0c(w)}dw,
dH1(w) = exp{a1 + b1c(w)}dw,
(a1, b1) = (− logB(φ1), φ1 − 1),

(a0, b0) = (− logB(φ0), φ0 − 1).

Hence, making use of (14), we obtain the following spectral density representation of the K-sample

bivariate extreme value beta model,

(15)
dH1(w)

dH0(w)
= exp {α1 + β1c(w)} ,

where the tilt parameters are

(16)

{
(α1, β1) = (log {B(φ0)/B(φ1)} , φ1 − φ0) ,

(α0, β0) = (0, 0)

Observe that this model is closed, in the sense that tilting always yields a symmetric Beta distribution.

3.2 Numerical Results

We now report computational experience with the method described above. We consider two scenarios:

in A the parameters are (φA
0 , φ

A
1 ) = (0.10, 0.30), so that (αA

1 , β
A
1 ) = (1.18, 0.20); in B the parameters

are (φB
0 , φ

B
1 ) = (0.90, 2.00), so that (αB

1 , β
B
1 ) = (2.00, 1.10). Given the computational cost of obtaining

full optimisation estimates, in practice we have found it best to use a two-step strategy wherein one

maximizes the unconstrained outer objective function with respect to γ, and minimizes the inner dual

problem with respect to the nuisance parameter δ. For large n the inner dual problem not only has

much lower dimensionality than the corresponding primal problem, but it also has the advantage of

being subject to a set of linear constraints that can be removed by using a pseudo-logarithmic function

(Owen, 2001, p. 62). In Figures 1 and 2 we plot instances of our numerical experiments, and to assess

the possibility of borrowing strength from a larger number of extremes on one of the samples, in both

cases we used an unbalanced design and simulated data with n0 = 50 and n1 = 100.
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Figure 1: Scenario A—spectral distribution functions estimated by empirical likelihood (above) and

using the spectral density ratio model (below); the dashed lines represent the true distribution func-

tions.
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Figure 2: Scenario B—spectral distribution functions estimated by empirical likelihood (above) and

using the spectral density ratio model (below); the dashed lines represent the true distribution func-

tions.
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