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Abstract

The U.S. Census Bureau has the responsibility to release high quality
data products while maintaining the confidentiality promised to all re-
spondents under Title 13 of the U.S. Code. This paper describes a Micro-
data Analysis System (MAS) that is currently under development, which
will allow users to receive certain statistical analyses of Census Bureau
data, such as cross-tabulations and regressions, without ever having ac-
cess to the data themselves. Such analyses must satisfy several statistical
confidentiality rules; those that fail these rules will not be output to the
user. In addition, the Drop q Rule, which requires removing a relatively
small number of units before performing an analysis, is applied to all
datasets. We describe the confidentiality rules and the major types of at-
tacks they prevent, as well as a method due to Reiter [2003] to create
synthetic residuals for regression diagnostics, then conclude with a de-
scription of other approaches to creating a system of this sort, and some
directions for future research.

1 Introduction

The U.S. Census Bureau collects its survey and census data under Title 13
of the U.S. Code, which prevents the Census Bureau from releasing any data
“. . . whereby the data furnished by any particular establishment or individual
under this title can be identified.” In addition to Title 13, the Confidential
Information Protection and Statistical Efficiency Act of 2002 (CIPSEA) requires
the protection of information collected or acquired for exclusively statistical
purposes under a pledge of confidentiality. However, the agency also has the
responsibility of releasing data for the purpose of statistical analysis. In common
with most national statistical institutes, our goal is to release as much high
quality data as possible without violating the pledge of confidentiality.

This paper discusses a Microdata Analysis System (MAS) that is under de-
velopment at the U.S. Census Bureau. Much of the framework for the system
was described in Steel and Reznek [2005] and Steel [2006]. The system is de-
signed to allow data users to perform various statistical analyses (regressions,
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cross-tabulations, correlation coefficients, etc.) on confidential survey and census
microdata without seeing or downloading the underlying microdata.

In Section 2, we give some background on the MAS and the motivation for its
development. In Section 3, we discuss the current state of the prototype system,
including its capabilities and the rules that protect confidentiality. In Section 4,
we examine some other approaches to the problem of creating a remote access
system such as the MAS. In Section 5, we conclude with remarks on future
research and the further development of the system.

2 Background on the MAS

The Census Bureau conducts reidentification studies on our public use micro-
data files. In these studies, we attempt to link our public use files to external
files that contain identifiers. It is reasonable to expect that with more publicly
available data and expanded use of data mining tools, there will be an increase
in the number and complexity of confidentiality threats. There is some concern
that in order to meet the confidentiality requirements under which the Census
Bureau operates, we may have to reduce the detail available in our data prod-
ucts and use more perturbation techniques to protect them, thus degrading the
quality of the data.

This problem of data confidentiality—at the Census Bureau and other sta-
tistical agencies around the world—has motivated the creation of remote access
systems which allow the user to request a statistical analysis and receive the
result without having direct access to the underlying microdata. Common to
almost all remote access systems is that the ability to receive desired results is
not absolute: in some instances, the result might be based on perturbed data,
and most proposals for remote access systems include the rejection of some
queries to preserve confidentiality. The idea of a remote access system goes back
at least to Keller-McNulty and Unger [1998], although the concept of allow-
ing customized queries was proposed much earlier; see the description of the
Geographically Referenced Data Storage and Retrieval System in Fellegi et al.
[1969]. Fellegi [1972] anticipates the need to screen the query results to ensure
that confidentiality is adequately protected.

Adam and Worthmann [1989] describe several restrictions on systems that
release counts of numbers of people with particular characteristics. These include
suppressing counts if the numbers are too close to 0 or to the full size of the
database; requiring that multiple queries from the same user have only limited
overlap; and keeping a log of each user’s queries and checking each new query
against the log to verify nondisclosure. However, they acknowledge that the last
of these is sufficiently time consuming and storage intensive as to be unfeasible.
They also consider the possibility of partitioning the data into indivisible units
of two or more observations each and allowing only queries that operate on
unions of the units, rather than on arbitrary sets of observations.

The Microdata Analysis System will allow the U.S. Census Bureau to pro-
vide a controlled, cost-effective setting in which data users have access to more
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detailed and accurate information than is currently available in our public use
microdata files. The data accessible through the MAS can identify smaller ge-
ographic areas and show more detail in certain variables where our public use
files would be coarsened. Our goal for the MAS is to allow access to as much
high quality data as possible, while lessening the need for data to be released
in less secure or more expensive manners, such as those described in Weinberg
et al. [2007]. A predecessor of the MAS is discussed in Rowland and Zayatz
[2001].

Unlike the proposal in Schouten and Cigrang [2003], our plan is to make the
MAS available to anyone who wishes to use it. In a sense, the MAS will serve as a
Research Data Center for the entire public, although there will be restrictions in
place that a qualified researcher would not encounter at an established Research
Data Center. The MAS will allow access to data from demographic surveys and
decennial censuses, with the goal of eventually including economic survey and
census data, as well as linked datasets. We will initially make available regression
analyses and cross-tabulations, with other analyses to be added in the future.
Currently, we intend to keep a record of all of the queries entered into the system,
but not the identities of the users making the queries. Although the record will
not directly affect the output that the system provides, it will allow us to see
how the system is being used. Our goals in doing this are to improve the user
experience and to enhance disclosure avoidance techniques if necessary.

Our current plan—as described in Chaudhry [2007]—is to offer the MAS
through the Census Bureau’s free DataFerrett service with the intention that
the system will be used by people needing fairly simple statistical analyses: news
media, some policy makers, teachers, students, etc. The MAS has a graphical
interface that allows users to select variables of interest from a list. In the case
of regression, variables can be dragged into equations and, with a few clicks,
users may create variable interactions and transformations of selected variables.
Some users may feel the need to use the underlying confidential microdata for
more exploratory data analysis, but it is not apparent how to allow this within
the MAS without violating confidentiality. These users may find our public use
files, when available, meet their needs if they account for the decreased accuracy
inherent in our disclosure avoidance procedures.

3 Overview of the MAS Confidentiality Rules

In 2005, the Census Bureau contracted with Synectics to develop an alpha pro-
totype of the MAS using the SAS language. We also contracted with Dr. Jerome
Reiter of Duke University to help in developing confidentiality rules for the sys-
tem and with Dr. Stephen Roehrig of Carnegie Mellon University to help in
testing these rules. Some rules were developed and modified as a result of the
testing. The beta prototype of the MAS implements a Java interface within
DataFerrett, which submits requested analyses to an R environment. We are
using the publicly available data from the Current Population Survey March
2008 Demographic Supplement to test the system.
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The MAS software is programmed with several confidentiality rules and pro-
cedures that uphold disclosure avoidance standards. The purpose of these rules
and procedures is to prevent data intruders from reconstructing the microdata
records of individuals within the underlying confidential data through submit-
ting multiple queries. The confidentiality rules discussed in this section are quite
complex, and this discussion does not delve into the complexities. More detail
can be found in Lucero [2009, 2010]. All analyses are subjected to two logical
checks, referred to as the No Marginal 1 or 2 Rule and the Universe Gamma
Rule, which ensure that no query is answered if the universe is too small or if
the universe can be used to carry out differencing attacks by comparing results
of similar universes. Regression analyses are further subjected to restrictions
on the use of predictor and response variables. We plan to explore whether
additional rules are necessary for correlation coefficients.

3.1 Confidentiality Rules for Universe Formation

MAS users are allowed to run their statistical analyses on a universe, or sub-
population, of interest. Users are presented with a set of variables and category
levels from which they can define a universe using condition statements on
the variables. For example, if the user selects gender = 2(female) from the
metadata, the universe is defined to be the sub-population of all females. A
slightly more complicated universe is gender = 1(male) ∨ employment status =
0(unemployed). This is the universe consisting of the sub-population of people
who are either male or unemployed. One of the confidentiality rules requires
that all variables used to define universes must be categorical.

Since a user may want to define a universe based on variables that are not
inherently categorical (i.e., those that are continuous), raw numerical variables
are presented to the user as categorical recodes based on output of a separate
binning routine. This cutpoint program, outlined in Lucero et al. [2009], creates
bins of numerical values and ensures a pre-specified minimum number of obser-
vations between any two cutpoint values. Section 3.1.3 describes possible ways
to generate cutpoints.

To define a universe using a numerical variable, a user is forced to choose from
a predetermined list of ranges the range that best meets her goal. For example,
if a user wished to run analysis on people with income = $46,000, the user
would select the metadata income = 4, which is the range ($45,000,$53,000]
on the variable income and defines the universe as the sub-population of all
individuals whose income is between $45,000 and $53,000. Note that a user
cannot define the universe to be the range income = ($39, 000, $46, 000] unless
$39,000 and $46,000 are among the pre-determined cutpoints. The user must
choose a range of values consistent with the cutpoints that are given. This
is a crucial restriction on what a user can do, since allowing arbitrary universe
formation on continuous data could lead to a differencing attack disclosure. Such
a disclosure would occur, for example, if a user requested a table for the universe
of individuals with an income of at least $11,313 and the corresponding table
for the universe of individuals with an income of at least $11,314, and then
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income
gender $0 to

$28,000
$28,000 to
$39,000

$39,000 to
$45,000

$45,000 to
$53,000

Total

male n1,1 n1,2 n1,3 n1,4 n1,.

female n2,1 n2,2 n2,3 n2,4 n2,.

Total n.,1 n.,2 n.,3 n.,4 n.,.

Table 1: Table representation of the universe defined from (1) and (2)

manually compared the two tables. If only one person in the dataset had an
income of $11,313, then this person’s other attributes could easily be deduced,
as described in Section 3.1.2.

3.1.1 Confidentiality by Minimum Universe Size Requirements

To define a universe in the MAS, the user would first select m recoded variables
from the metadata, then select up to j bins for each of the m recoded variables.
Universe formation on the MAS is performed using an implicit table server. For
example, suppose a data user defines the universe as the union:

gender = female AND $45, 000 < income ≤ $53, 000 (1)

OR
gender = male AND $28, 000 < income ≤ $45, 000 (2)

This universe is represented as selected cells from a two-way table of counts
for gender and income, as shown in Table 1. Note that there are n2,4+n1,2+n1,3

total observations in this universe. For convenience, we will use the notation
U(n) to denote a universe with n observations. In most cases, it should be clear
from the context which n observations lie in the universe. In this example, the
universe defined as the union of (1) and (2) will be referred to as U(n2,4 +n1,2 +
n1,3).

In describing universes, we make a distinction between a simple universe and
a complex universe. A simple universe is one that can be described using variable
categories and the intersection set operator. A complex universe is constructed
as the union of multiple simple universes.

All universes formed on the MAS must pass two confidentiality rules: the
No Marginal 1 or 2 Rule and the Universe Gamma Rule. If a universe violates
either of these rules, the MAS will reject the universe query and prompt the user
to modify his selections. These rules are tested prior to performing the user’s
selected statistical analysis on the defined universe.

The No Marginal 1 or 2 Rule requires that for a universe defined using m
variables, there may not be an m− 1 dimensional marginal total equal to 1 or 2
in the m-way contingency table induced by the chosen variables. The universe
U(n2,4 + n1,2 + n1,3) passes the No Marginal 1 or 2 Rule if:

(ni,. ≥ 3 OR ni,. = 0, for i = 1, 2) AND (n.,j ≥ 3 OR n.,j = 0, for j = 1, ..., 4)
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The Universe Gamma Rule requires that a simple universe must contain at
least Γ observations; otherwise no statistical analysis will be performed. We are
still considering what value of Γ will appropriately reduce disclosure risk while
not leading to an undesirably large number of denials.

The way this rule is checked for complex universes is dependent on whether
the universe is disjoint or joint. A universe is classified as disjoint if its individual
pieces do not share cell counts in common. For example, pieces (1) and (2) for the
universe U(n2,4 +n1,2 +n1,3) are disjoint. Since U(n2,4 +n1,2 +n1,3) is a disjoint
universe, the MAS would check that piece (1) and piece (2) each contain at least
Γ observations. Note that the cutpoint bins of income are combined within piece
(2) prior to performing the test; however, bins representing different classes of
an inherently categorical variable would not be combined. In this case, since the
n1,2 and n1,3 bins differ from each other only by a cutpoint variable, they are
combined, and the MAS checks:

n2,4 ≥ Γ AND (n1,2 + n1,3) ≥ Γ

A universe is classified as joint if at least one of its individual pieces shares
cell counts in common with at least one other piece. For example, suppose the
user defines the universe U(n2,. + n1,3 + n1,4) = (3) OR (4), where (3) and (4)
are given by

[gender = female] (3)

[$39, 000 < income ≤ $53, 000] (4)

In this case, the observations in n2,3 and n2,4 — females with income in the
interval ($39,000 , $53,000] — are included in both pieces (3) and (4). See Table
2. Since U(n2,.+n1,3+n1,4) is a joint universe, the Universe Gamma Rule would
first check that pieces (3) and (4) contain at least Γ observations, following the
disjoint universe scenario. Next, the intersection I = (3) ∩ (4) 6= {} would be
checked to determine that I contains at least Γ* observations, where Γ∗ ≤ Γ is
another parameter to be determined. In this example, the MAS checks that the
following inequalities are satisfied before any results will be returned:

n2,. ≥ Γ AND (n.,3 + n.,4) ≥ Γ AND (n2,3 + n2,4) ≥ Γ∗

Once again, the cutpoint bins of income are first combined within piece (4) and
within I prior to the testing of the Universe Gamma Rule. In general, when a
joint universe is considered, all of the non-empty intersections of the pieces of
the universe must be checked to make sure they are sufficiently large.

3.1.2 Confidentiality by Random Record Removal

While the preceding rules provide some protection of the confidential data in
the MAS, they do not completely prevent differencing attack disclosures. A dif-
ferencing attack disclosure occurs when a data intruder attempts to reconstruct
a confidential microdata record by subtracting the statistical analysis results
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income
gender $0 to

$28,000
$28,000 to
$39,000

$39,000 to
$45,000

$45,000 to
$53,000

Total

male n1,1 n1,2 n1,3 n1,4 n1,.

female n2,1 n2,2 n2,3 n2,4 n2,.

Total n.,1 n.,2 n.,3 n.,4 n.,.

Table 2: Table representation of the universe defined from (1) and (2)

Tn ES1 ES2

G1 n1,1 n1,2

G2 n2,1 n2,2

−
Tn−1 ES1 ES2

G1 n1,1 n1,2 − 1
G2 n2,1 n2,2

=
T1 ES1 ES2

G1 0 1
G2 0 0

Figure 1: An Example of a Differencing Attack Disclosure

obtained through two queries on similar universes. Suppose a data intruder first
creates two universes on the MAS, U(n) and U(n− 1), where both contain the
same n observations with the exception of one observation missing from the
second universe, i.e., |U(n)\U(n − 1)| = 1. The difference U(n)\U(n − 1) =
U(1) is a manipulated universe that contains the single target observation. For
illustration, suppose a data intruder has prior knowledge of demographics in a
small geographic area, and in particular is aware of individuals, households or
establishments with unique characteristics within that area. It may be the case
that there is only one non-citizen among the n residents of the area. Then the
intruder may create U(n) and U(n−1), where U(n) is the full universe of people
in the area and U(n − 1) is the universe consisting of citizens who live in the
area. Suppose the data intruder then requests two separate cross-tabulations
for gender by employment status on these universes, Tn and Tn−1, as shown in
Figure 1. Since U(n) and U(n− 1) differ by a unique observation, Tn−1 will be
exactly the same as Tn, less one unique cell count.

We may perform the matrix subtraction Tn−Tn−1 = T1, where T1 is a two-
way table of gender by employment status built upon the one unique observation
contained in U(n)\U(n − 1) = U(1). As shown in Figure 1, T1 contains a cell
count of 1 in the male non-employed cell with zeros in the remaining cells, which
tells the data intruder that the one unique observation contained in U(1) is an
unemployed male. By performing differencing attacks similar to the one just
described, a data intruder can successfully rebuild the confidential microdata
record for the one unique observation contained in U(1).

A differencing attack may also be a concern if there are two observations
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within an area that have a certain characteristic, particularly if the intruder
is himself one of these two. Suppose, for example, that the universe contains
only two non-citizens, one of whom is the intruder. The intruder could then
construct the full universe U(n) and the portion of the universe consisting solely
of citizens U(n− 2). Since the intruder knows his own personal characteristics,
he may manually remove himself from U(n) to get U(n − 1) and then perform
a differencing attack as above by comparing U(n − 1) and U(n − 2) to obtain
information on the other non-citizen in the area.

To help protect against differencing attacks, the MAS implements a universe
subsampling routine called the Drop q Rule. Traditionally, subsampling has usu-
ally been used to estimate parameters when a population is too large to analyze
in an efficient manner and a (usually small) subset can give approximately the
same results as the full population. Our aims are very different here: the Drop q
Rule is intended to remove just enough observations from the dataset to thwart
a differencing attack. A differencing attack performed while the Drop q Rule is
in place will not lead to a meaningful outcome, when the attack is of one of the
types described above.

The Drop q Rule works as follows. A user-defined universe that passes all of
the previous rules has q records removed at random. To do this, the MAS will
first draw a random integer value of q such that 2 ≤ q ≤ k and such that when
the universe is modified by omitting q records, the number of remaining records
is a multiple of 3. Here k is some predetermined number, which may depend on
the size of the universe. Then, given q, the MAS will subsample the universe
U(n) by removing q records at random from U(n) to yield a new subsampled
universe U(n− q).

Within the MAS, all statistical analyses are performed on the subsampled
universe U(n− q) and not on the original universe U(n). Each unique universe
U(n) that is defined on the MAS will be subsampled independently according
to the Drop q Rule. To prevent an “averaging of results” attack, the MAS will
produce only one subsampled universe U(n− q) for each unique universe U(n),
with this unique subsample persisting for the lifetime of the system. That is,
all users who select a specific universe U(n) will have all analyses performed on
exactly the same subsampled universe U(n−q). To avoid obvious storage issues,
the MAS accomplishes consistent subsampling of universes by using the same
random seed to perform the subsampling every time a given universe comes up.
To receive the full disclosure protection offered by the Drop q Rule, it is necessary
that the seed, while constant for a given universe, differs across universes, and
this can be implemented by having the seed be a function of the set of units in
the universe.

Note that the differencing attacks of most concern require, among other
things, that two universes are available that differ in size by 1 or 2. However,
under the Drop q Rule described above, all subsampled universes have sizes
that are multiples of 3, and no pair of multiples of 3 (including pairs where both
numbers are the same) can have a difference of 1 or 2. Hence the Drop q Rule
eliminates the possibility of this sort of disclosure.

The Drop q Rule is a generalization of the previously used Drop 1 Rule and
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Tn−q1 ES1 ES2

G1 n1,1 − x1,1 n1,2 − x1,2

G2 n2,1 − x2,1 n2,2 − x2,2

−
Tn−1−q2 ES1 ES2

G1 n1,1 − y1,1 n1,2 − 1− y1,2

G2 n2,1 − y2,1 n2,2 − y2,2

=
T? ES1 ES2

G1 y1,1 − x1,1 1 + y1,2 − x1,2

G2 y2,1 − x2,1 y2,2 − x2,2

Figure 2: Differencing Attack Thwarted by the Drop q Rule

Drop 2 Rule, where a small and fixed number of observations were removed
before analysis. These rules led to tables that were susceptible to differencing
attacks. One notable vulnerability could be exploited by starting, as usual, with
two universes U(n) and U(n − 1), identical with the exception of one unit,
with the intention of performing a differencing attack. For example, an intruder
might know that a certain geographical region contains exactly one Korean
War veteran. The intruder could then consider the universe of all people in
that region, as compared to the universe of all non-Korean War veterans in
the region. However, instead of requesting a tabulation of these two universes,
the intruder may augment each universe by adding to it the full population of
a non-overlapping geographical region of size N >> n, such as a large state
that does not contain the original region. Then a three-way tabulation could be
done of veteran status versus state versus the variable that the intruder wishes
to disclose for the augmented universes U(n + N) and U(n − 1 + N). In the
case of the Drop 2 Rule, it is overwhelmingly likely that all four of the dropped
observations will be in the large region of size N, thus leaving the portions of
the provided tables representing the original region of interest unmodified. The
MAS currently prevents a “padding” attack of this sort by restricting the types
of geographies on which an analysis can be performed, and we are looking into
how to further strengthen the system against this type of attack.

3.1.3 Cutpoint Methods

The cutpoints used in universe formation in the MAS are generated by a separate
program. Various methods exist in the program, and each provides a different
set of cutpoints, as influenced by the empirical distribution of a variable. The
methods implemented are fixed width, minimum width, increasing width, and
partitioned binning. Cutpoints for different variables in the dataset can use
different strategies, but the final cutpoints for a given variable are generated only
once, after choosing an appropriate strategy. What follows is a basic description
of each strategy.

Fixed width binning ensures that all bins have the same width. This is im-
plemented as finding a constant ωFW , such as 10, so that the distance from the
minimum value to the maximum value of each bin will be ωFW . Because bin
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Figure 3: Fixed and Minimum Width Binning on 1,000 N(0,1) random samples

widths are constant, the number of observations in each bin will vary, causing
some bins to be sparsely populated while others are dense. The fixed width is
chosen to be the minimum value ωFW such that all bins contain at least βFW

observations, for some pre-determined value βFW . This can make ωFW large, so
that the resolution across dense areas of the data is too crude. In data following
a Gaussian distribution, the bin width will be determined by the tails and the
center bins will be quite dense.

Minimum width binning uses a value βMW and creates bins such that each
has as close to βMW observations as possible. Identical realizations of the vari-
able will not be split across multiple bins. For example, considering a numerical
variable X with support N, all observations with X = 5 will belong to the same
bin regardless of the number of observations with X = 5. This approach tends
to generate bins of smaller width than other approaches, since it allows for finer
resolution in dense areas of the data but allows the bins to be much wider when
covering sparse data in order to include at least βMW observations.

Increasing width binning may be viewed as a compromise between fixed
and minimum width binning. Increasing width binning starts with a fixed bin
width, ωIW , which gradually increases as the value of the variable increases. This
corrects the problem in fixed width binning of bins tending to be large, while
also allowing for a consistent bin width, which one does not get in minimum
width binning. Considering income data, ωIW might equal 25,000 at X = 0 but
when the cutpoint reaches X = 100, 000, ωIW may jump to 150,000 as a way to
deal with sparser data in the tails. For sufficiently large X, we obtain a value
of ωIW = ∞ once the number of remaining observations approaches some value
α < 2βIW , where βIW is the maximum allowable number of observations in a
bin under this method.

As a quick example of how each method performs on the same data, consider
a dataset 1,1,2,2,4,4,5,6. Table 3 shows the cutpoints, or boundaries, for each
bin that the different algorithms will create. Assume that the minimum number
of elements in each bin is βMIN = 2.

10

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS046) p.3124



Method Bin 1 Bin 2 Bin 3 Bin 4
Fixed W. 1-2 3-4 5-6 NA
Min. W. 1-1 2-2 4-4 5-6
Inc. W. 1-2 3-6 NA NA
Partitioned 1-1 2-2 4-4 5-6

Table 3: Bins created on the dataset {1,1,2,2,4,4,5,6}

The binary tree for the partitioned binning is shown in Figure 4. A user may
choose pieces for the universe using any node shown in the diagram.

Each approach has its own strengths and weaknesses, so which performs best
on a given variable depends both on the variable’s support and distribution and
on the properties desired by the user. However, none of the methods considers
the underlying distribution of a variable in building the bins, so it is necessary to
analyze the performance of a chosen method. Consider how each would perform
on a Gaussian distribution. Fixed width binning may not provide the resolution
desired around the mean, and increasing width binning is primarily useful when
the probability density function of the variable in question is decreasing over
most of the range of the variable. Partitioned and minimum width binning will
produce similar results, but the cutpoints in the minimum width and partitioned
approaches may provide binning so fine that the exact values for some records
are at risk.

3.2 Confidentiality Rules for Regression Models

The MAS implements a series of confidentiality rules for regression models, in
addition to the universe restrictions already mentioned. For example, users may
only select up to 20 independent variables for any single regression equation.
Users are allowed to transform numerical variables only, and they must select
their transformations from a pre-approved list. This prevents the user from
performing transformations that deliberately overemphasize individual obser-
vations such as outliers. Currently, the allowable transformations are square,

[1− 6]

zzuuuuuuuuu

$$IIIIIIIII

[1− 2]

zzuuuuuuuuu

��

[4− 6]

�� $$IIIIIIIII

[1− 1] [2− 2] [4− 4] [5− 6]

Figure 4: Partitioned Binning on dataset {1,1,2,2,4,4,5,6}
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square root and natural logarithm.
Any fully interacted regression model that contains only dummy variables

as predictors poses a significant potential disclosure risk, as described in Reznek
[2003] and Reznek and Riggs [2004]. Therefore, users are allowed to include only
two-way and three-way interaction terms within any specified regression model,
and no fully interacted models are allowed. Furthermore, a two-way interac-
tion is allowed only if both of the interacted variables appear by themselves
in the model, and a three-way interaction is allowed only if all three variables
appear uninteracted in the model and each of the three associated two-way in-
teractions appears. However, interactions do not count against the 20-variable
limit (so that, for example, if a model includes two predictor variables and their
interaction, this is considered two variables, not three, for the purpose of the
limit). Categorical predictor variables are included in the model through the
use of dummy variables for all categories except one reference category. The
MAS uses the most common category as the reference category. In addition,
each predictor dummy variable must represent a category containing a certain
minimum number of observations; if this minimum is not met, the dummy vari-
able is omitted from the model. In effect, this means that very sparse categories
are absorbed into the reference category level. The minimum allowable number
of observations in a category is not given here since it is Census confidential.

Prior to passing any regression output back to the user, the MAS also checks
that R2 is not too close to 1. If R2 is too close to 1, then the MAS will suppress
the output of the regression analysis, as releasing the results of the regression
would allow estimation of the response variable with a high degree of accuracy
if the values of the predictor variables for any unit were known. It may also be
the case that the regression does not have an unreasonably high R2, but that
there exists a subset of units for which the response variable can be predicted
unusually well given the predictor variables. Regressions with this feature may
be suppressed. The system may also suppress instances where an interaction
term leads to a sparse combination of categories, as this may be a disclosure risk.
If all of these requirements are satisfied, then the MAS will pass the estimated
regression coefficients and the Analysis of Variance (or Deviance) table to the
user without restrictions (except for the absorption of categories mentioned
above). If the requirements are not satisfied, the system may attempt to absorb
additional categories of any categorical predictors into the reference category,
as this may result in a regression whose output is allowed to be released.

Sparks et al. [2008] propose some other confidentiality rules for regression,
such as using robust regression to lessen the influence of outliers, although at
the moment, we still plan to use ordinary least squares regression when the
response variable is numerical.

3.2.1 Synthetic Residual Plots

To determine whether the regression adequately describes the data, diagnostics
such as residual plots are necessary. Actual residual values pose a potential
disclosure risk, since a data intruder can obtain the values of the dependent
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variable by simply adding the residuals to the fitted values obtained from the
regression model. Therefore, the MAS does not pass the actual residual values
back to the user. To help data users assess the fit of their ordinary least squares
regression models, diagnostic plots are based on synthetic residuals and synthetic
real values. These plots are designed to mimic the actual patterns seen in the
scatter plots of the real residuals versus the real fitted values, or of the real
residuals versus the values of the individual variables.

The first step in creating synthetic residual plots is to create the synthetic
dataset in such a way that the synthetic data mimic the actual data. Using
the notation of Reiter [2003], let xp be a variable in the collected dataset, for
p = 1, . . . , d. In the synthetic dataset, xs

p corresponds to the original xp variable,
with the superscript s indicating the use of a synthetic dataset. The dataset xs

p

will be stored alongside xp. There are various methods to generate xs
p, but this

discussion will follow the method described in Reiter [2003], both for creating
synthetic data and for creating synthetic residuals.

For categorical variables xp, xs
p are generated from bootstrap sampling the

collected data. If some categories are sparsely populated, there is the potential
for averaging the synthetic residual values at the sparse category to disclose real
residuals, but otherwise this part of the algorithm poses negligible disclosure
risk. One possible approach to this problem is to suppress residuals for categories
that are sufficiently sparse. For continuous variables xp, the distribution of the
variable is approximated non-parametrically using a kernel density estimator,
and then inverse-cdf sampling is used to generate xs

p from the approximate
distribution. Both of these steps can easily be implemented in R. When Reiter’s
method is used, there is no one-to-one correspondence between real observations
and synthetic observations, so there need not be any particular relationship
between the size of the actual dataset and the size of the synthetic sample. This
feature helps to protect outliers, as an outlier in the original data may not appear
in the synthetic plot or may appear more than once. In the case of categorical
predictor variables, we let the synthetic sample size equal the actual sample size,
while in the case of numerical predictor variables, we let the synthetic sample
size be the minimum of 5,000 and the actual sample size. This is because when
making the synthetic and actual sample sizes equal in the numerical case, we
found that the system was slow when dealing with large datasets, and that the
vast majority of the time that the analysis took was spent creating the synthetic
residual plots for numerical variables.

A shortcoming of the method for creating synthetic continuous predictors
is that the kernel density estimator is not able to identify a probability mass
at a single point, but rather will assume that the probability density function
should be high in the neighborhood of that point. This should not invalidate
the method, but it will affect the distribution along the x-axis for a predictor
variable such as income, for which many people have a true value of 0, and for
which round numbers are frequently reported.

It should be noted that both of these methods for creating the synthetic
data work with one variable at a time, i.e., xs

p are drawn marginally, not jointly,
and thus no valid analysis can be performed based on the joint distribution of
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the synthetic variables. This is not currently a major concern, as it is not our
intention to release synthetic data through the MAS. However, this does impose
a limitation on the range of diagnostics that we can make available in the future
based on synthetic variables generated using this method.

The next step is to generate the standardized synthetic residuals ts
p so that

the relationship between ts
p and xs

p at points xs
kp in xs

p is consistent with the
relationship between t and xp around point xs

kp. To accomplish this, we must
make a different set of synthetic residuals for each predictor variable. Note that
xs

kp, if numerical, will not necessarily be a value observed in continuous real
data, but may be drawn with the inverse-cdf method.

For each variable, the goal is to give the user something akin to a plot of the
standardized residuals of the full (possibly multiple) regression model versus the
value of xp. For a variable p and an index k, define

tskp = bkp + vkp + nkp

The first term gives the expected value of the standardized residual for any
given value of p; the second accounts for the variation of the actual standardized
residuals around their expected values (which may change depending on the
value of xkp if heteroscedasticity is present); and the third adds noise to further
prevent disclosure.

To calculate the first term bkp, a generalized additive model (GAM) is built
for t and xp. The value bkp equals the value of the GAM curve at the point
xs

kp and is used to fit the values tskp to the general relationship of t and xp,
ignoring for the moment the variation of t around its local mean. Note that
ts
p will differ for every regression a user requests, and that it is important that

the GAM not be overfit. In extreme cases, an overfit GAM can create some
of the same disclosure risks as releasing a regression with a high R2. There
may be some difficulty in avoiding such an overfit in an automated setting.
For categorical variables, a GAM cannot be fit, and we set bkp = 0 because
whenever a regression including a categorical variable is performed, the mean
residual among observations with any particular level of that categorical variable
is 0.

Next, tskp is shifted off the curve bkp by vkp, which represents the amount by
which the points in the real data around xs

kp deviate from the curve. For the
case where xp is numerical, we consider the real data standardized residual tj ,
where

j = arg mini|xs
kp − xip|

is the index of the unit in xp whose value is closest to xs
kp. Ties can be bro-

ken by selecting randomly from all tied choices. Having found j, we compute
vkp = tj − bjp where bjp is the value obtained from the GAM at xjp. If xp is
categorical, j is the index of a randomly selected observation in the real data
such that xjp = xs

kp, so we set vkp = tj , since bjp = 0.
Finally, a noise term nkp ∼ N(0, σ) is added to tskp where, for each regres-

sion, σ should remain constant so that there is not artificial heteroscedasticity
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in the synthetic residuals. The same random seed should be used for all regres-
sions using the same dependent variable; if this were not done, there would be
the possibility of running the same or similar models a number of times and
averaging the different results, creating a disclosure risk. Careful selection of σ
is important, as a value that is too small may not provide enough protection
against disclosure, while a value that is too large may cause patterns that are
of interest to a legitimate user to be dwarfed by random variation.

When all steps are complete, the system creates a scatterplot of the syn-
thetic residuals versus each numerical synthetic predictor variable, as well as
a scatterplot of the synthetic residuals against the fitted value, with a kernel
smoother used to show the general shape of the latter curve. To protect out-
liers, the scatterplot requires all synthetic standardized residuals to be in the
interval [-4,4], with values that would otherwise be outside this range truncated
appropriately.

Since categorical predictors do not lend themselves to scatterplots, the resid-
ual plots for categorical variables are replaced by side-by-side boxplots. Sparks
et al. [2008] propose that numerical predictor variables be binned in a cutpoint-
like fashion, and that the bins be used to create categories for side-by-side
boxplots, which can be returned to the user instead of scatterplots, with Win-
sorization being performed to protect outliers. Since this binning lowers the
resolution with which we can see the variable along the x-axis, Sparks et al.
[2008] use it as a substitute for synthetic data.

We are beginning to implement regression diagnostics for logistic regressions
in the manner described in Reiter and Kohnen [2005].

4 Other Approaches

Since the idea of a remote access system has been in existence for several years,
a number of approaches have been proposed that differ from ours to varying
degrees, and we survey some of them here.

Schouten and Cigrang [2003] present a variant of the idea of a remote ac-
cess system, which allows outstanding versatility, but is also difficult to create
and expensive and laborious to maintain. Their proposed system allows users
to submit queries by email, written in any of several statistical programming
languages. If a query is approved, the user receives the results by email. Before
the analysis is performed, an automated system determines the legitimacy of the
request, with particularly difficult cases handled manually. As with the MAS,
certain types of output are allowed and certain types are not, but since the code
is user-generated, rather than generated by the system behind the scenes, it is
challenging to identify all unallowable queries. This is especially true because,
as the authors emphasize, the validity of a query may depend on information
already released as a result of previous successful queries. The authors write,
“Computers are simply not fast enough and the construction of a system that
fully evaluates the risk of disclosure may be too costly and complex and there-
fore not feasible.” Thus, in a system like this, it may be necessary to perform
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some disclosure avoidance analysis on a query after the result of the query has
already been returned. This is not ideal, as a query that is a disclosure threat
might not be identified until its output has already been provided. However,
such a method could be effective if the users are from large institutions and
have signed a contract describing their research and pledging to uphold confi-
dentiality. In this case, the fear of a user or institution’s jeopardizing its future
access to the data may serve as a sufficient deterrent to deliberate submission
of an invalid query. In this type of system, a username and password would be
necessary so that individual users’ actions could be properly tracked.

A system of the general variety that Schouten and Cigrang [2003] propose
has been implemented by the Luxembourg Income Study (LIS), a research insti-
tute collecting data on income, wealth and various other measurements, founded
in 1983 (see Lux [2009a]). The LIS data are an aggregation of household sur-
veys taken by various contributing countries. LIS’s remote access system—called
LISSY—allows registered users to submit their own code via email or an online
form, which may be written in SAS, SPSS or STATA. Output, when deemed
allowable, is returned by email and is viewable on the form. The system does
not allow certain commands that could be used to obtain a disclosure relating to
an individual or household. Also prohibited are “sequences of commands and/or
variables that would end up breaching the rules on data confidentiality;” these,
as well as requests that give overly long output, are flagged for manual analysis
or are denied outright. Further specifics are given in Lux [2009b]. Schouten and
Cigrang [2003] also note that the LIS contains an archive of jobs submitted,
which can be further evaluated to make sure the data are being used properly.

Sparks et al. [2008] propose a system—Privacy-Preserving Analytics R©—
that performs a number of methods for disclosure avoidance, including keeping
track of the regression models a user requests and ensuring that only a limited
(although large) number are run for each possible response variable. They also
ensure that a user does not make too many closely related requests.

Gomatam et al. [2005] make a distinction between static servers and dy-
namic servers. A static server has a pre-determined set of queries to which it
will provide an answer. A dynamic server receives a query and makes a decision
on whether to provide an answer. A dynamic server—such as the one described
in Schouten and Cigrang [2003]—would keep a running record of all previously
answered queries, and whenever a new query was submitted, it would be com-
pared against the list to determine whether providing an answer would lead to
a disclosure risk when the new answer was combined with previously provided
answers. A dynamic server has the highly undesirable property that the order in
which queries are submitted by the collective group of users plays a large role in
determining which queries are answered, and that eventually the server reaches
a point where no new queries can be answered. Since queries are answered or
rejected as they are received, the set of queries that are ultimately answered is
not the result of a careful assessment of which analyses would provide the most
utility to legitimate researchers while keeping disclosure risk at an acceptable
level. Gomatam et al. [2005] write that “[w]hether dynamic servers are possible
remains an open question.” The MAS is at its heart a static server, since it
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operates under a set of rules that do not depend on previous queries. However,
it operates in a dynamic fashion, since the rules are checked for each new query
that is submitted, rather than comparing it to a pre-computed list, as creating
such a list would be prohibitive. In a way, the MAS does not fit into the frame-
work of Gomatam et al. [2005], as it sometimes will provide regression output
that is less detailed than the user might have liked instead of refusing output
altogether.

Another approach to protecting privacy from a query-accepting statistical
database is to suppress from any tables any cells that are deemed a disclosure
risk, either directly or indirectly. Adam and Worthmann [1989] discuss this
possibility and note that in certain systems, cell suppression is not a feasible
solution to the disclosure problem.

5 Future Work

The MAS will continue to be developed within DataFerrett. We will soon
be testing the software itself and the confidentiality rules within the MAS beta
prototype to ensure that they properly uphold disclosure avoidance standards.
We plan to draft a set of confidentiality rules for cross-tabulations, and add
different types of statistical analyses within the system. In addition, we will
explore other intruder tactics and determine what rules must be put into place
to prevent their success.
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