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1. Introduction
Let us begin by assuming availability of a sequence X1, X2, ... of independent

observations following a U(0, θ) population with an unknown scale parameter θ, 0 <

θ <∞. Having recorded X1, ...,Xn, let us denote the customary estimators:

Sample Mean: Xn ≡ n
−1Σni=1Xi

Sample Maximum: Xn:n ≡ max{X1, ..., Xn}.
(1.1)

Ghosh and Mukhopadhyay (1975) introduced a purely sequential minimum risk

point estimation procedure for θ (> 0). This was developed under a squared error

loss plus a linear cost function of sampling. Mukhopadhyay et al. (1983) broadened

that earlier methodology considerably. In these papers, the unknown parameter θ

was estimated by the associated randomly stopped Xn:n in both the loss function and

the stopping rule.

Subsequently, Mukhopadhyay (1987) pursued a slightly different idea for sequen-

tial minimum risk point estimation for θ. He used the associated randomly stopped

versions of Xn:n or 2Xn in either the loss function or the stopping rule. Performances

of such procedures were compared with those associated with the earlier proposed

sequential estimators of θ based on Xn:n.

But, clearly, using a randomly stopped version of 2Xn would amount to some

loss of information when compared with a corresponding randomly stopped Xn:n in

both the loss function and the stopping rule. In this note, we explore some novel

approaches for recovering such lost information by fine-tuning the loss function itself

and then tailoring the associated sequential methodologies appropriately.

We will examine how the sequential risks of our newly proposed methodologies

would compare with those associated with the existing sequential estimators. We

will also present small, moderate as well as large sample-size performances of the new

randomly stopped versions of Xn:n and explore some selected second-order properties.

Designs of original two-stage and multi-stage sampling methodologies and their

practical implementations in large-scale sample surveys date back to Mahalanobis’s

(1940) pioneering research. The broad area of multi-stage and sequential estimation
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problems may be reviewed from Sen (1981), Woodroofe (1982), Siegmund (1985),

Mukhopadhyay and Solanky (1994), Ghosh and Sen (1990), Ghosh et al. (1997),

Mukhopadhyay et al. (2004), and Mukhopadhyay and de Silva (2009) among other

sources.

Having recorded X1, ...,Xn, let us consider a generic estimator Un of θ and let the

loss function associated with this estimator be:

Ln (Tn, θ) = K (Un − θ)
2 + cn, (1.1)

where c(> 0) is the cost per unit sample and K(> 0) is some appropriate weight.

In this paper, we will consider two rival unbiased estimators of θ and two different

weights in their respective loss functions. Then, we consider tuning these weights

involved in these loss functions in such a way that the (asymptotic) risks associated

with them to become comparable.

This adjustment in the loss function becomes particularly relevant when one es-

timator of θ is based on the complete sufficient statistic Xn:n = max{X1, ..., Xn}

and the rival estimator is based on a non-sufficient statistic, say, Xn. Now, the risk

associated with the loss function given in (1.1) is given by:

Rn(c; θ) ≡ Eθ [Ln (Un, θ)] = KEθ
[
(Un − θ)

2]+ cn. (1.2)

For the two choices of estimators of θ, namely U
(1)
n and U

(2)
n , let the weights in

the corresponding loss functions be respectively K1 and K2. Then, after equating the

two risks we should have:

K1Eθ
[(
U (1)n − θ

)2]
= K2Eθ

[(
U (2)n − θ

)2]
. (1.3)

In this way, one will come up with two different loss functions. In general, K1

and K2 may involve our unknown parameter θ. This approach can motivate many

customary weighted loss functions that are often employed under decision theory.

To be more specific, we may fix U
(1)
n ≡

(
n+1
n

)
Xn:n and U

(2)
n ≡ 2Xn, the two possible

choices for the final estimator of θ. The respective risks will be given by:

R(1)n (c; θ) ≡ Eθ
[
Ln
(
U (1)n , θ

)]
= K1θ

2

n(n+2)
+ cn ≈ K1θ

2

n2
+ cn, for large n,

and R
(2)
n (c; θ) ≡ Eθ

[
Ln

(
U
(2)
n , θ

)]
= K2θ

2

3n
+ cn.

(1.4)

Now, employing (1.3) in conjunction with (1.4) yields (for large n):

K2 = 3n
−1K1.

Thus, our two loss functions now become:

L
(1)
n

(
U
(1)
n , θ

)
= A

(
U
(1)
n − θ

)2
+ cn, (1.5)

and

L
(2)
n

(
U
(2)
n , θ

)
=
3A

n

(
U
(2)
n − θ

)2
+ cn, (1.6)
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with the asymptotic risk for both:

R(2)n (c; θ) ≈ R
(1)
n (c; θ) =

Aθ2

n2
+ cn. (1.7)

This risk is minimized when

n is the smallest integer ≥
(
2Aθ2/c

)1/3
= n∗, say. (1.8)

The minimum risk associated with (1.7)-(1.8) is given by:

R
(1)
n∗ (c; θ) = R

(2)
n∗ (c; θ) ≈

Aθ2

n∗2
+ cn∗ =

cn∗3

2n∗2
+ n∗ ≈

3

2
cn∗. (1.9)

The required optimal fixed sample size n∗ from (1.8) depends on θ and hence may

be estimated or updated step-by-step determined sequentially. In section 2, we will

specifically indicate how to implement such sequential methodologies. From (1.8), we

note that we have n∗ =
(
2Aθ2/c

)1/3
. Thus, in general, we may proceed as follows:

We may begin with pilot dataX1, ...,Xm of sizem(≥ 1) and then move forward by

taking one additional observation at-a-time, if needed, according to a purely sequential

stopping time defined as follows: Let us denote:

N = inf
{
n ≥ m(≥ 1) : n ≥ (2A/c)1/3 T 2/3n

}
. (1.10)

Here, the consistent (for θ) estimator Tn that is used in defining the boundary crossing

may look rather different from U
(1)
n or U

(2)
n . We will introduce alternative choices in

Section 2. But, once sampling would stop according to the stopping rule (1.10), we

would be accruing the final dataset {N,X1, ..., Xm, ..., XN}, and our final estimator

of θ at termination will be either U
(1)
N or U

(2)
N .

In Section 2, we will propose four different stopping rules N1 −N4 based on four

different choices of the estimator Tn. However, the final estimator of θ will be either

U
(1)
Nj

or U
(2)
Nj
, j = 1, 2, 3, 4. Considering Nj as our stopping time and UN ≡ U

(i)
Nj
, the

associated risk will be the expected value of L
(i)
Nj

(
U
(i)
Nj
, θ
)
, j = 1, 2, 3, 4 and i = 1, 2.

Our goal is to compare the risks associated with the corresponding sequential ver-

sions of the fixed-sample-size unbiased estimators 2Xn that is based on non-sufficient

statistic with
(
n+1
n

)
Xn:n that is based on a complete sufficient statistic. A similar idea

was initially proposed by Mukhopadhyay (1987) in a much smaller scale. Section 3

presents some relevant data analyses.

2. Four Sequential Methodologies and the Stopping Times
The previous section introduced a generic sequential stopping rule in (1.10). We

may contemplate using different expressions of Tn or T 2n or T
2/3
n in defining the bound-

ary condition found in (1.10) as different estimators of θ, θ2, or θ2/3 respectively. Let

us consider the following choices:
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(i) T
(1)
n = Xn:n: Estimating θ based on the complete sufficient

statistic, Xn:n;

(ii) T
(2)
n =

(
n+1
n

)
Xn:n: Estimating θ unbiasedly based on the

complete sufficient statistic Xn:n;

(iii) T
(3)
n = 4

(
1 + 1

3n

)−1
X
2

n: Estimating θ2unbiasedly based on

the non-sufficient statistic, Xn;

(iv) T
(4)
n =

(
3n
3n+2

)
X
2/3
n:n : Estimating θ2/3 unbiasedly based on the

complete sufficient statistic, Xn:n

One should note that T
(2)
n coincides with U

(1)
n .

Now, given these four estimators we go ahead and propose four different stopping

rules as follows:

N1 = inf

{
n ≥ m(≥ 1) : n ≥ (2A/c)1/3

(
T
(1)
n

)2/3}
; (2.1)

N2 = inf

{
n ≥ m(≥ 1) : n ≥ (2A/c)1/3

(
T
(2)
n

)2/3}
; (2.2)

N3 = inf

{
n ≥ m(≥ 1) : n ≥ (2A/c)1/3

(
T
(3)
n

)1/3}
; (2.3)

N4 = inf
{
n ≥ m(≥ 1) : n ≥ (2A/c)1/3 T (4)n

}
. (2.4)

We can show that Pθ (Nj <∞) = 1, j = 1, 2, 3, 4, and hence upon termination of

the stopping time Nj, the unknown parameter θ will be finally estimated by the two

analogs of fixed-sample-size unbiased estimators, namely by U
(1)
Nj
≡
(Nj+1
Nj

)
XNj :Nj and

U
(2)
Nj
≡ 2XNj , for j = 1, 2, 3, 4.

The losses due to estimation of θ will be determined by the functions given in (1.5)

and (1.6). Along the line of Robbins (1959), we define the usual “risk-efficiency” and

“regret” of a sequential estimation procedure as:

risk-efficiency: η
(i)
Nj
(c) ≡ R

(i)
Nj
(c; θ)/Rn∗(c; θ)

regret ω
(i)
Nj
(c) = R

(i)
Nj
(c; θ)−Rn∗(c; θ)

(2.5)

for i = 1, 2. It should be clear that i = 1 or 2 respectively corresponds to the finally

proposed estimator U
(1)
Nj

or U
(2)
Nj

for θ under each fixed j = 1, 2, 3, 4.

2.1. Properties of the Sequential Strategies
(
Nj, U

(i)
Nj

)

It should be noted that this research is ongoing at this point. Hence, all of

the asymptotic properties associated with the sequential strategies
(
Nj, U

(i)
Nj

)
, i =

1, 2, j = 1, 2, 3, 4 have not yet been found. That said, we report what we have found

so far without giving their proofs. However, we can easily show that N4 ≤ N1 ≤ N2
w.p.1.

First, we summarize some of asymptotic first-order results (Ghosh and Mukhopad-

hyay, 1981) for the sequential strategies
(
Nj, U

(i)
Nj

)
described by (2.1), (2.2), and (2.4).
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Theorem 2.1. For the sequential strategies
(
Nj, U

(i)
Nj

)
described by (2.1 ), (2.2 ), and

(2.4 ), j = 1, 2, 4, we have as c→ 0:

(i) Nj/n
∗ → 1 w.p.1 under true θ;

(ii) Eθ(Nj/n
∗)→ 1;

(iii) For every fixed ε ∈ (0, 1), Pθ {Nj ≤ [εn
∗]} = Oe(c

m/2) where [u]

stands for the largest integer ≤ u;

(iv) η
(i)
Nj
(c) ≡ R

(i)
Nj
(c; θ)/Rn∗(c; θ)→ 1, that is, these estimation strategies

are asymtotically risk-efficient ;

where n∗ =
(
2Aθ2/c

)1/3
was defined by (1.8 ).

Next, we summarize some of asymptotic second-order results (Ghosh and Mukhopad-

hyay, 1981) for the sequential strategies
(
N3, U

(i)
N3

)
described by (2.3).

Theorem 2.2. For the sequential strategies
(
N3, U

(i)
N3

)
described by (2.3 ), i = 1, 2,

we have as c→ 0:

(i) n∗−1/2(N3 − n
∗)

L
−→ N(0, 4

27
) under true θ;

(ii) Eθ(N3) = n
∗ + 5

18
+ o(1) for m ≥ 1;

(iii) Eθ
{
(N3 −E(N3))

2} = 4
27
n∗ + o(n∗) for m ≥ 1.

(iv) Eθ
{
(N3 − n

∗)2
}
= 4

27
n∗ + o(n∗) for m ≥ 1.

(v) For every fixed ε ∈ (0, 1), Pθ {Nj ≤ [εn
∗]} = Oe(c

m/2) where [u]

stands for the largest integer ≤ u;

(vi) η
(i)
Nj
(c) ≡ R

(i)
Nj
(c; θ)/Rn∗(c; θ)→ 1, that is, these estimation strategies

are asymtotically risk-efficient ;

where n∗ =
(
2Aθ2/c

)1/3
was defined by (1.8 ).

3. Data Analyses: Simulations
In this section, we briefly describe some simulation studies carried out in order

to compare the performances of the randomly stopped versions of the two estimators

U
(1)
Nj

and U
(2)
Nj

. Our study includes the behavior of all four stopping variables from

(2.1)-(2.4). Throughout, we keep θ = 1 and A = 1 fixed, thus leading to c = 2/n∗3.

We have considered a wide range of choices of n∗ values.

But, for brevity, we summarize our findings in the case when n∗ = 150 and

m = 10. We start with m = 10 and then implement the sequential stopping rules

(2.1)-(2.4) until termination. Under each configuration, we independently replicate

each procedure 5000 times under each sampling strategy.

Suppose that at the kth replication, we observe the stopping variable Nj = njk,

the corresponding randomly stopped estimate for θ as U
(i)
Njk

= u
(i)
njk for i = 1, 2; j =

1, 2, 3, 4, and k = 1(1)5000. The loss in estimating θ corresponding to U
(1)
Njk

will be

L
(1)
njk

(
u
(1)
njk , θ

)
=
(
u
(1)
njk − 1

)2
+cnjk and that corresponding to U

(2)
Njk

will be L
(2)
njk

(
u
(2)
njk , θ

)
=

3
njk

(
u
(2)
njk − 1

)2
+ cnjk. We use the following notations in our tables:

L
(i)

nj
= 1

5000

∑5000
k=1 L

(1)
njk

(
u
(1)
njk , θ

)
for i = 1, 2
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nj =
1

5000

∑5000
k=1 njk

s(nj) =
√

1
(5000−1)

∑5000
k=1 (njk − nj)

2

R = (3/2)cn∗

ωij =
1

5000

∑5000
k=1 ω̂

(i)
njk
(c), for i = 1, 2

ηij =
1

5000

∑5000
k=1 η̂

(i)
njk
(c), for i = 1, 2

where j = 1, 2, 3, 4. Then, we repeated this process 10 times independently.

Table 3.1. Comparing average and standard deviations of sample sizes

from stopping rules (2.1)-(2.4): m = 10, n∗ = 150

n1 s(n1) n2 s(n2) n3 s(n3) n4 s(n4)

149.704 0.614 150.512 0.734 150.327 4.720 149.205 0.799

149.692 0.647 150.502 0.758 150.179 4.752 149.195 0.819

149.712 0.605 150.528 0.711 150.415 4.720 149.213 0.778

149.702 0.614 150.516 0.726 150.206 4.783 149.204 0.794

149.713 0.619 150.530 0.726 150.354 4.695 149.223 0.806

149.724 0.611 150.536 0.724 150.196 4.779 149.226 0.790

149.709 0.588 150.527 0.699 150.253 4.668 149.203 0.772

149.706 0.615 150.519 0.725 150.346 4.703 149.213 0.783

149.710 0.593 150.517 0.713 150.305 4.802 149.208 0.767

149.727 0.593 150.535 0.707 150.283 4.851 149.219 0.780

In Table 3.2, for immediate references, we provide all 10 values of nj − n
∗, j =

1, 2, 3, 4.

Table 3.2. Comparing nj − n
∗, j = 1, 2, 3, 4 values

from stopping rules (2.1)-(2.4): m = 10, n∗ = 150

n1 − n
∗ n2 − n

∗ n3 − n
∗ n4 − n

∗

−0.296 −0.273 0.512 0.535 0.327 0.284 −0.795 −0.781

−0.288 −0.294 0.528 0.519 0.415 0.346 −0.787 −0.787

−0.287 −0.276 0.530 0.536 0.354 0.196 −0.777 −0.774

−0.291 −0.298 0.527 0.516 0.253 0.206 −0.797 −0.796

−0.290 −0.308 0.517 0.502 0.305 0.179 −0.792 −0.805

For brevity, we restrict our attention to only these two Tables 3.1-3.2 and Figure

3.1. Here, n∗ = 150. Table 3.1 shows the estimated means and standard deviations

of stopping times under four different rules. Table 3.2 gives estimated second-order

results for the stopping times.

The non-linear renewal theory from Woodroofe (1977,1982) as well as from Lai

and Siegmund (1977,1979) is used to prove the asymptotic second-order properties of

stopping time N3 as laid out in Theorem 2.2. Note that we may expect Eθ(N3−n
∗) ≈
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5
18
= 0.278. Columns 5-6 in Table 3.2 empirically confirms this. Also, from Theorem

2.2 we may expect
√
Vθ(N3) ≈

√
4
27
n∗ = 4.714.

(a)

(b)

Figure 1: Plots of risk-efficiency (a) and regret (b) under stopping rule (2.1)

when m = 10 and n∗ = 150.

Column 6 in Table 3.1 empirically confirms this. Empirically, it appears that

the estimated values of
√
Vθ(Nj) << the estimated values of

√
Vθ(N3), j = 1, 2, 4.
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However, for all four stopping rules, the average discrepancies between mean stopping

time and n∗ appears to be rather similar.

Figure 3.1 shows the behavior of risk and regret functions for 10 independent

simulations corresponding to the stopping rule (2.1) only when m = 10 and n∗ = 150.

The randomly stopped estimator 2XN1 appears to perform better in comparison to

the rival estimator
(
N1+1
N1

)
XN1:N1. For brevity, we kept out other similar figures.

4. Concluding Thoughts
The focus of this article is to compare the behaviors of rival sequential versions

of specific two specific fixed-sample-size unbiased estimators of θ, obtained from four

different stopping rules. In the conference we hope to present more results and data

analyses. We intend to show more details on how the regret and risk-efficiency behave

for the two rival estimators under their respective loss functions.
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Abstract

The purely sequential minimum risk point estimation procedure for the unknown

parameter θ (> 0) in a U(0, θ) population has been discussed in this article. This

was developed under a squared error loss plus a linear cost function of sampling.

The unknown parameter θ is estimated by means of four different estimators in the

stopping rule, where as in the loss function two different unbiased estimators of θ

were proposed. However, the unbiased estimators are randomly stopped versions of

Xn:n and 2Xn in either loss function. Performances of such estimators are compared.

Clearly, using a randomly stopped version of 2Xn would amount to some loss of

information when compared with a corresponding randomly stopped largest sample

order statistic under both loss functions and the stopping rules. In this paper, we

explore a novel approach to recover any loss of information by fine-tuning the loss

function and then properly tailoring the associated sequential methodologies. We

examine how the sequential risks of our newly proposed methodologies would compare

with those associated with the existing sequential estimators.
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