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The paper presents the extended version of the talk to be presented on the Special Topics Session
”Statistical analysis of extremes and its application” of the 58-th World Statistics Congress of IST and
is based mainly on the papers [10], [11].

We consider the tail index estimation, the problem which during last several decades attracted
attention of theoretical statisticians and practitioners as well since in many fields of applied probability
the so-called heavy-tailed distributions play an important role. Indirectly this can be confirmed by
Google Scholar giving approximately 170000 entries for ”tail index estimation”. The problem (in its
the most simple form) can be formulated as follows. Let us consider a sample Xi,..., Xy of size
N taken from a heavy-tailed distribution function (d.f.) F, that is, we assume that Xi,..., Xy are
independent identically distributed (i.i.d.) random variables with a d.f. F' satisfying the following
relation for large x:

(1) 1—F(x) =a “L(x).
Here ae > 0, L(x) > 0 for all > 0 andL is a slowly varying at infinity function:

L(tz)

0 L(z) 1.

The problem is to estimate the parameter «. It is worth to mention that this is particular case
of more general problem of estimation of the extreme value index in the Extreme Value Theory
(Google Scholar gives approximately 670000 entries for ”estimation of extreme value index ”). We
recall that a distribution function F' is in domain of attraction of the extreme value distribution
G (x) = exp(—(1 +y2)~1/7), v € R if there exist constants a,, > 0 and by, such that

lim F"(anz + by) = G, (),

n—oo

for all 1 + zy > 0. The parameter v € R is called the extreme value index. Tail index estimation
problem corresponds to the case v > 0, and there is a simple relation between these two indices,
namely, a = 7~ '. Most popular estimators of v are based on rank statistics and some facts from
Extreme Value Theory, such as limit behavior of excess distribution function and the relation between
order-statistics and exponential distributions (the Renyi representation theorem). For details and
explanation of intuition, on which several popular estimators , such as Hill’s, Pickand’s and others,
are based, we refer to a recent paper [15]. Some of estimators, ( for example, Hill’s estimator) , are
designated only for tail index estimation, that is, for positive 7, others work both for positive and
negative v. But all they are based on idea that it is necessary to take the largest values from the
ordered statistics Xny1 < Xno < -+ < Xy v from a sample Xy,..., Xy, and from these values to
extract information about parameter ~.

From now on we concentrate on the tail index estimation only.

Our goal is to present one more estimator of the tail index and to discuss its merits and short-
comings. Although it was introduced almost ten years ago (see [1] and [9]), only recently it was realized
that due to its construction this estimator can be successfully used in analysis of high frequency data,
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which became rather important issue in financial econometrics, network statistical analysis, and some
other fields. At first we present the construction of this estimator and the intuition behind it.

We divide a sample into n groups Vi,...,V,, each group containing m random variables, that
is, we assume that N = n-m and V; = {X(_1)m+1,---» Xim+1}. (In practice, at first m is chosen

1)

52

and then n = [N/m] is taken, where [z] stands for the integer part of a number = > 0.) Let MT(Z
max{X;: X; € V;} and let MT(LQB denote the second largest element in the same group V;. Let us denote
VA n
(2) Un,i = T(Lil) ) Sn = Z Uni, Zn = nilsn-
M i=0

n,t

In [1] the estimator Z,, from (2) (in a different context of a sample from multivariate stable
distribution and with the restriction 0 < a < 1) was based on the following relation (see LePage et al
[71)

( i)

n,a

Mfz?i))m_l/a &NHOO (Fil/a’ Fgl/a)7

and the fact that

A 1/
E()\l—l—l/\2> :Oéj—l'

Here I'; = 3‘:1 Aj,  Aj,7 = 1, are i.i.d. standard exponential random variables, and L, denotes
the convergence in distribution.

In [9] it was noted that estimator from (2) can be based on a different idea. Let us take two
independent random variables X and Y with the same Pareto distribution

Flz)=1-Ca™® z>Cy/",
and denote
(3)

It is not difficult to verify that, denoting p = a/(1 + «), we have EW = p (since W is invariant

~ min(X,Y)
~ max(X,Y)’

under scale transformation, we can take C7 = 1 and, in the sequel, we shall refer to that case as a
standard Pareto distribution). Therefore, in the case of the Pareto distribution, quantity Z,, as an
estimator for the parameter p (we shall denote this quantity by p, and as in [13], we shall call it as
the DPR estimator), is nothing but the sample mean for a bounded random variable, moreover, in
this case the best choice is to take m=2. If the underlying distribution F' is not exactly Pareto, but
satisfies condition (1) then it is natural to expect that for large m Ep = Ew,; will be close to p,
and Z, will be consistent estimator of this parameter. But it is clear that having only condition (1)
without any additional information about the function L, it is difficult to get good properties, such as
the asymptotic normality, of any estimator of the parameter a. Therefore from now we assume that
a sample is taken from a distribution function F' which satisfies the second-order asymptotic relation
(as ¢ — 00)

(4) 1— F(z) = Cia~® + Cox™ " + o(z™7),

with some parameters 0 < o < f < oo. (Here it is possible to mention that in most papers dealing
with extreme value index estimation, a little bit general the second-order condition with a different
parametrization is used).

Since Z,, is a sum of i.i.d. and bounded random variables, main difficulty in proving asymptotic
normality of estimator p is to get good estimate of the bias v, = Ep — p. The following estimate was
obtained in [9]:

() (| < Com™,
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where ( = (8 — a)/a, and Cj is a constant depending on C7,Cy, «r, and (. This estimate allowed to
prove the asymptotic normality of the DPR estimator. Asymptotic of 7, was obtained in [10] and
the following result was proved. We write a,, ~ by, if lim,,_, apb,, =1,

Theorem 1 [10]. Let us suppose that F satisfies (4) with 0 < a < f < 0o and C1 > 0. Then we have

(6) Y ~ XM, (m — o0),

where
_ OBEr(C+1)
M a+1)(B+1)

For sufficiently large N (ensuring that m > 2) taking

we get that MSE (mean square error) is minimal

1/(142¢)
(8) E (p—p)° ~ (1+20) (Qg;ﬁé%)
Under this choice of m we have the asymptotic normality
(9) Vi = p) =N—co N 0%),
where

(a+1)2(a+2)

p=0(20)""? sgn(x), o=

This result allowed to compare the introduced estimator p with some other well-known estimators

of the tail index. In [5] there were compared four estimators fy](\l,) w1 =1,2,3,4, of the parameter :

k—1

%(V{)k =7 Z log Xy n—i — log XN N—k,
i=0

XNN-[k/4] — XN,N—[k/2]
XN.N—[k/2] — XN,N—k

3 1 1 - 4
Wk =kt 1= 51— (RN = 2

N,k
where
My = % > (log Xy n—i —log Xy n—k)*.
i=0

Under the assumption (4) all estimators 7](\?]{, i = 1,2,3,4, are asymptotically normal and,
more important, all they have the same rate of convergence. In [5] the asymptotic mean square
error (AMSE) was chosen as a criterion of comparison of estimators , and all these estimators were
compared. It turned out that none of these estimators dominates the others: for different values of
the parameters, present in the second order relation (4), different estimators have the smallest AMSE.
In [10] it was shown that the DPR estimator has the same order of the rate of convergence as these
four estimators, and it was possible to compare the estimator p with all ’y](\?k, 1 =1,2,3,4. The fact
that the DPR estimator has the same order of the rate of convergence as these four estimators is
not unexpected, since parameter m in estimator p plays a similar role as k plays in the definition of
estimators 'y](\i,?k, and, taking 2m terms in total from a sample, we essentially take the largest values.
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Although estimators 7%?,6 and estimator ’y%}k asymptotically perform better than the DPR estimator

p (they have smaller AMSE for all values of parameters «, (3), relation between other two estimators
and p is the same as in [5]: for some values of parameters «, § the estimator p performs better than
(Q)k and 'y](\i;’)k

The next steps to improve the DPR estimator were made in [13] and [11]. In [13] the ideas
of the Hill and the DPR estimators were successfully combined. At first, the tail index estimation
procedure is the same as for the DPR estimator, division of a sample in n groups with m elements
in each group. Then, instead of taking two largest elements in each group, Qi takes Hill estimator in
each group, using s + 1 (1 < s < m — 1) largest values from the ordered statistics Mr(le) > Mflnz)
in each group V;. Averaging these estimators over groups Qi obtains the following estimator of the

parameter v = a L

(10) Z Z log MY} —log M)

i=17=1
In [13] it is proved that, under second-order condition (4), this estimator is asymptotically normal,
and that estimator (1) performs better that the DPR estimator for all v > 0.

In [11] all class of estimators, generalizing the DPR estimator is introduced. The idea is to take
some function f : [0,1] — [0, 00] such that E f(W) exists where W is from (3), then this expectation
will be some function of «, depending, of course, on function f. Let us denote h(a, f) = E f(W).
If h(a, f) is a one-to-one map from [a,b] to [c,d] with [a,b] and [c,d] being subsets of [0, cc], then
estimating the quantity h(«, f) and taking the inverse function we get an estimator for « (with the
restriction a < a < bif 0 < a < b < o). Therefore it is natural to consider statistic of the form

1 n
(11) = funa).
iz
In [11] the following family of functions, continuous in the parameter r,

(12) fr(x) =

is investigated in detail. Let us note that for this family of functions h,(a) := h(a, f;) = a(r + a)~!
The estimator p is obtained taking f(x) = x, the estimator yy(1) from (10) corresponds to the case

1—2a"

, —a<r<oo, r#0 and fo(xr)=—Inz,
r

fo(xz) = —In(x) and hg(a) = a~!. Taking f. in (11), we have the following family of estimators:

1— (vn;)" N
(13) ZU” rjs Ongrj = (rn’]) , —a<r<oo, r#0, Uyo,; =—Inuv,;.
Taking the inverse of h,(c), we have estimators &, = (1 — rp,.)p, !, —a < r < oo. Considering the
estimator p, we additionally assume that F'(1) = 0. This assumption was used in the paper [13], too,
and is needed only for the reason that we consider negative powers of a random variable taking values
in the interval [0, 1]. The main result in [11] is the following theorem.

Theorem 2 [11]. Let us suppose that F(1) = 0 and let F satisfy (4) with 0 < a < f < oo and
Cy # 0. Also, let us suppose that a sequence m = m(N) — oo, as N — 0o, is such that

(14) N/mT2 = 2% e [0, 00).

We recall that ¢ = (6 — «) /. Then

(15) Vi (8r = 0) o nse (@4 7) N (e, 07),
where

1) CoACT(Bla) o _ ,

- o a+r)B+r) 1 (a+r)at2r)
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In the same paper it was shown that there is an optimal (in the sense of AMSE) value r,, which
depends on « and [ from (4). Moreover, an explicit expression of this optimal value r, was obtained,
namely,

re=-3 <(a+ﬂ)— (a+5)2—2a2>.

Since estimators p and (1) are in the same family of estimators with » = 1 and r = 0, respectively,
this means that estimator &, performs better than estimators an (1) = 1/yn(1) and & = p(1 —p) L.
Comparison with the Hill and the Pickands estimators is also given. Again the estimator « Nk =
(7](\}’)19)_1, obtained from the Hill estimator dominates estimator &,, for all possible values of «, 3, but
the ratio of AMSE of these two estimators for big values of « is close to 1 (see Fig. 2 and Fig. 3 in [11]).
Although it is difficult to believe that among generalized DPR, estimators it will be possible to find
estimator which would dominate Hill estimator for all possible values of «, 8, preliminary calculations
show that it is possible to construct DPR type estimators, dominating Hill estimator in some regions
of values «a, (.

These theoretical results allow to state, that DPR type estimators performs quite well and,
taking into account simplicity of construction and some other advantages to be listed bellow, deserve
future investigation. At present no theoretical results are known for dependent data. In contrast,
for traditional estimators, based on rank statistics, this problem is quite well investigated. Another
important problem is the choice of parameters m (size of groups) and r.. We know optimal values of
these parameters, but they depend on unknown parameters «, 3. At present we can propose only the
following two-step procedure. There are known procedures (see, for example, [3]) of estimating of both
parameters in the second-order condition (4), thus, as the first step, we estimate these parameters and
then use them to calculate m and r, and apply estimator &, .

One more interesting question is if it is possible to adapt the idea of the DPR estimator for
negative -, that is , for the estimation of the extreme value index.

At the end of this note we would like to discuss the advantages of the DPR estimator and
its modifications; these advantages already had been mentioned in [8],[13],[10]. This estimator is well
adapted for high frequency financial data (the so-called stamped transaction-by-transaction or tick-by-
tick data), when one has a big flow of data (millions of data in short period), since the statistics is very
simple and can be calculated recursively, what allows the so-called on-line estimation. Demonstration
of such estimation is described in [5], where some procedures for choosing the size of groups m is also
given. As it was noted in [13], there are situations,where only few largest values of observations in
the blocks are available, then the DPR type estimators still can be applied, while estimators, based
on ordered statistics are not applicable. Also it can be noted that the DPR type estimators are well
adapted for detecting the change in tail index, since the construction of such estimators allow to keep
time structure of arriving data, which is important issue in the change point problem. Moreover, due
to the construction of the generalized DPR estimators, the problem of detecting the change in tail
index is reduced to the problem of change of mean value of some random variable. Namely, having a
sample X;, 1 =1,2,..., N, where the index ¢ can be attributed to time when the data X, is obtained,
we get a new sample Y, j = 1,2,...,n, where Y; = f(vy ;). Now the problem is to decide if there
is a change of mean in this new sample. And this problem is well investigated, a lot of results are
available. Contrary, the initial problem of the change in the tail index has attracted attention of not so
many statisticians, see [7] and references therein and [14] where financial crisis in some Asian financial
markets in 1997 was explained by the tail index change in some financial time series. In both papers
tests, based on the Hill estimator were used. In [4] the DPR estimator was used for detecting change
in the tail index and the results were applied to analysis of the same financial time series from some
Asian countries as in [14].

Very recently, the author with his students specializing in financial mathematics had examined
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the data of several popular financial indices, such as Dow Jones, NASDAQ, S&P500, and NTSE. The
analysis was carried for the absolute values of returns, taking the daily data for the period 2005.09.07-
2009.08.26 (this period gives N = 1000). The generalized DPR estimators from [11] and the same
method in detecting the change of a mean as in [4] were used for analysis. It is interesting to note that
considering the above written period, for most indices the test did not show that there was a change
in the tail index of the distribution of returns, while taking smaller interval 2007.06.21-2009.08.26 for
all indices the test shows the change in the tail index. This can be explained by the fact that the
change of a mean is detected better if the change is close to the middle point of the interval under
consideration. Since financial crisis was in the Autumn of 2008, the first interval 2005.09.07-2009.08.26
is very unsymmetrical with respect to this data, while the second interval is chosen in such a way that
the possible time of a change would be in the middle of the interval. All these results will be published
elsewhere soon.
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