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We propose a new statistic that has been designed to be used in situations where the intrinsic

dispersion of a data set is not well known: ‘The Crossing Statistic’. This statistic is in general

less sensitive than χ2 to the intrinsic dispersion of the data, and hence allows us to make progress in

distinguishing between different models using goodness of fit to the data even when the errors involved

are poorly understood. We show that this statistic can easily distinguish between different models in

cases where the χ2 statistic fails. We also show that the last mode of Crossing Statistic is identical to

χ2, so that one can consider it as a generalization of χ2.

SN Ia act to some degree like standardized candles, and are widely used in cosmology to probe

the expansion history of the universe, and hence to investigate the properties of dark energy. Indeed it

is from observations of SN Ia that the first direct evidence for an accelerating universe was found [2],

and although this result has far reaching physical consequences, a complete understanding of the

physics of SN Ia is still lacking. This lack of understanding is manifest in the largely unaccounted for

intrinsic dispersion of SN Ia, which affect almost any subsequent statistical analysis that one attempts

to perform [3]. Given that the intrinsic dispersion of SN Ia, σ(int), typically constitute a large fraction

of the total error on a data point, σi, this is a serious problem.

One procedure that is often used to find the a priori unknown intrinsic dispersion is to look for

the value of σ(int) that gives a reduced χ2 of 1 for a particular model, and then to use this value to

determine the likelihood of the data given that model. Such an approach does indeed allow one to

distinguish between different models using the likelihood function, but at the expense of losing much

of the original concept of ‘goodness of fit’ (which is the essence of a χ2 analysis). Rather than directly

answering the question of which model actually fits the data best, we are then left with answering the

question of which model can be made to give an ideal fit to the data by adding the smallest possible

error bars. This gives us no direct information about which model best fits the data, as the error bars

have been adjusted by hand so that they all fit perfectly. Furthermore, by treating error bars in this

way it becomes very difficult to detect any features that may be present in the data.

If we want to determine the goodness of fit of different models to the data, we must therefore take

a different approach. Standard statistics, such as χ2, however, are only reliable when the assumed

parameterization of the model is correct, and when the errors on the data are properly estimated.

Given that the true nature of dark energy is still not known, and that we have no reliable theoretical
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derivation of σ(int), the application of χ2 statistics to the SN Ia data is not at all straightforward.

These problems persist even when using non-parametric or model independent approaches [4].

To address these difficulties we propose a new statistic, which we call the Crossing Statistic [1].

This statistic is significantly less sensitive than χ2 to intrinsic dispersion of the data, and can therefore

be used more easily to check the consistency between a given model and a data set with largely

unknown errors. The Crossing Statistic does not compare two models directly, but rather determines

the probability of getting the observed data given a particular theoretical model. It works with the

data directly, and makes use of the shape and trends in a model’s predictions when comparing it with

the data.

In the following we will discuss the concept of goodness of fit and show how the χ2 statistic

is sensitive to the size of unknown errors, as well as how it fails to distinguish between different

cosmological models when errors are not prescribed in a definite manner. We will then introduce

the Crossing Statistic and show how it can be used to distinguish between different cosmological

models when the standard χ2 analysis fails to do so. For simplicity, we will restrict ourselves to four

theoretical models: (i) a best fit flat ΛCDM model, (ii) a smooth Lemâıtre-Tolman-Bondi void model

with simultaneous big bang [5], (iii) a flat ΛCDM model with Ω0m = 0.22, and (iv) an open, empty

‘Milne’ universe. We will use the Constitution supernovae data set [6] consisting of 147 supernovae at

low redshifts and 250 supernovae at high redshifts, from the SuperNovae Legacy Survey, the ESSENCE

survey, the HST data set, as well as some older data sets, and fitted for using the SALT light-curve

fitter. We adjust the size of the error-bars in this data set by considering additional intrinsic errors

(added quadratically). By comparing with χ2 we then show that the Crossing Statistic is relatively

insensitive to the unknown intrinsic error, as well as being more reliable in distinguishing between

different cosmological models. In a companion paper, we will test a number of other dark energy

models using this statistic.

First let us consider the χ2 statistic. For a given data set (µe
i , i = 1 · · ·N) we have that χ2 is

given by

χ2 =
N∑

i

(µt
i − µe

i )
2

σ2
i

,(1)

where µt
i is the model prediction that we are comparing the data set to, and σi are the corresponding

variances (σ has units of magnitudes throughout). If the data-points are uncorrelated and have a

Gaussian distribution around the distribution mean, then we have a χ2 distribution with N − NP

degrees of freedom (where NP is the number of parameters in the theoretical model).

Now let us now calculate the χ2 goodness of fit for two of our cosmological models: a flat best fit

ΛCDM model, and a Milne universe. Let us also assume an additional intrinsic error, σ(int), on top of

the error prescribed in the Constitution data set, σi(data), so that the total error is σ2
i

= σ2
i(data) +σ2

(int).

This will allow us to check how sensitive our analysis is to coherent changes in error-bars. In Fig. 1 we

plot the χ2 goodness of fit for our two theoretical models as a function of σ(int). It can be seen that

these two models cannot be easily distinguished from each other using χ2 alone, unless the additional

intrinsic error is known. We also note that the χ2 goodness of fit for the standard flat ΛCDM model

given the Constitution data without any additional intrinsic errors is less than 0.6% (χ2 = 465.5 for

397 data points).

If the real Universe differs from the assumed theoretical model, one would hope that it would be

possible to develop a statistical test that would be able to pick up on this. To these ends we consider

the ‘crossings’ between the predictions of a given model, and the real Universe from which data is

derived. Figure 2 shows a schematic picture of what we mean by one crossing (left panel), and two

crossings (right panel). In what follows we will use the existence of this type of crossing to develop

a new statistic that can be used to determine the goodness of fit between an assumed model and the
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Figure 1: The χ2 goodness of fit of the Constitution supernovae data [6] to a flat ΛCDM model (red line) and

a Milne universe (blue line), assuming additional intrinsic errors added quadratically to the errors specified in

the data set. The χ2 goodness of fit for these two models can be seen to be comparable for different values of

additional intrinsic error, making them difficult to distinguish without any knowledge of what σ(int) should be.
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Figure 2: An idealized schematic plot of one crossing (left panel) and two crossings (right panel) between a

proposed theoretical model and the actual model of the Universe when comparing magnitudes as a function of

redshift, µ(z). In reality the actual Universe is observed in the form of data with error bars, of course.

real Universe.

To build our Crossing Statistic in the case of SN Ia data, we must first pick a theoretical or

phenomenological model of dark energy (e.g. ΛCDM) and a data set of SN Ia distance moduli µi(zi)

(e.g. the Constitution data set [6]). As in [7], we use the χ2 statistic to find the best fit form of the

assumed model, and from this we then construct the error normalized difference of the data from the

best fit distance modulus µ̄(z):

qi(zi) =
µi(zi) − µ̄(zi)

σi(zi)
.(2)

Let us now consider the one-point Crossing Statistic, which tests for a model and a data set that cross

each other at only one point. We must first try to find this crossing point, which we label by nCI
1 and

zCI
1 . To achieve this we define

T (n1) = Q1(n1)
2 + Q2(n1)

2,(3)

where Q1(n1) and Q2(n1) are given by

Q1(n1) =
n1∑

i=1

qi(zi)

Q2(n1) =
N∑

i=n1+1

qi(zi),(4)

and where N is the total number of data points. If n1 is allowed to take any value from 1 to N (when

the data is sorted by red shift) then we can maximize T (n1) by varying with respect to nCI
1 . We then
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Figure 3: The χ2, TI , TII and TIII statistics for a best fit flat ΛCDM model (red lines), a void model (blue

dashed lines), the Milne universe (green dashed lines) and a flat ΛCDM model with Ωm = 0.22 (pink dotted

lines). The analyses are performed using the Constitution supernovae data [6], and by assuming various different

additional intrinsic errors. The confidence limits derived from 1000 Monte Carlo realizations of the data error

around the zero mean value. It can be seen the χ2 statistic fails to distinguish between these models with any

degree of significance, and that by assuming additional intrinsic errors all models can be made to show a good

consistency with the data. The TI crossing statistic, on the other hand, rules out the Milne universe and also

the flat ΛCDM model with Ωm = 0.22 to a high degree of confidence, even when the amount of additional

intrinsic error is large.

write the maximum value of T (n1) as TI . Finally, we can then use Monte Carlo simulations to find

how often we should expect to obtain a TI larger or equal to the value derived from the observed data.

In particular, for each Monte Carlo dataset we can find the best fit form of µ(z) and then follow the

steps above to find the corresponding TI . In doing this we find the fraction of Monte Carlo data sets

leading to TM.C
I

≥ T data
I

, which we will use as an estimate of the probability that the data set should

be realized from the particular best fit cosmological model we have been considering.

This approach can be extended to models with more than one crossing point by the two-point

Crossing Statistic. In this case we assume that the model and the data cross each other at two points

and, as above, we try to find the two crossing points and their red shifts, which we now label nCII
1 , zCII

1

and nCII
2 , zCII

2 . This is achieved by defining

T (n1, n2) = Q1(n1, n2)
2 + Q2(n1, n2)

2 + Q3(n1, n2)
2,(5)

where the Qi(n1, n2) are now given by

Q1(n1, n2) =
n1∑

i=1

qi(zi)

Q2(n1, n2) =
n2∑

i=n1+1

qi(zi)

Q3(n1, n2) =
N∑

i=n2+1

qi(zi).(6)
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We can then maximize T (n1, n2) by varying with respect to n1 and n2, to get TII . Comparing TII

with the results from Monte Carlo realizations then allows us to determine how often we should expect

a two-point crossing statistic that is greater than or equal to the TII obtained from real data. The

three-point Crossing Statistic, and higher statistics, can be defined in a similar manner. This can

continue up to the N-point Crossing Statistic which is, in fact, identical to χ2. We also note that the

zero-point Crossing Statistic, T0 = (
∑

N

i qi)
2, is very similar to the Median Statistic developed by Gott

et al. [8]. The Crossing Statistic can therefore be thought of as generalizing both the χ2 and Median

Statistics, which it approaches in different limits.

Let us now apply our Crossing Statistics to a suite of different models. We calculate χ2, TI ,

TII and TIII for (i) the best fit flat ΛCDM model (with Ω0m = 0.288 when σ(int) = 0), (ii) a best fit

asymptotically flat void model (with Ω0m = 0.28 at the centre, and with FWHM at z = 0.66 when

σ(int) = 0), (iii) a flat ΛCDM model with Ω0m = 0.22, and (iv) the Milne open universe. We use the

Constitution data set [6], and vary the additional intrinsic error, σ(int), between 0 and 0.25 magnitudes.

In Fig. 3 we compare these statistics with the confidence limits that result from 1000 Monte Carlo

realizations of the data error around a zero mean value for each σ(int). One could use other models for

these confidence limits, but we expect them to be relatively insensitive to the particular model that

is chosen.

It can be seen from Fig. 3 that the χ2 statistic (upper left panel) cannot easily be used to

distinguish between the different models with a high degree of confidence, especially if we do not know

σ(int). Indeed, if we add σ(int) = 0.1 magnitudes to the data then all four models become a good

fit, at the 60% confidence level. Alternatively, with σ2
(int) = 0 all four models are outside of the 99%

confidence level. This illustrates the ineffectiveness of χ2 as a statistic for determining the goodness

of fit when the errors on the data are not well known.

The results for the one-point Crossing Statistic are shown in the upper right panel in Fig. 3. In

terms of this statistic it can be seen that the best fit flat ΛCDM model and the best fit void model are

now very much consistent with the data, even with no additional intrinsic error. At the same time, it

is also clear that the Milne universe and the flat ΛCDM model with Ω0m = 0.22 lie well outside the

99% and 95% confidence levels, even when σ(int) is large. Based on our new statistic, these last two

models are therefore ruled out with high confidence. In the lower panels in Fig. 3 we see the results for

the two-point and three-point Crossing Statistics, respectively. The Milne Universe remains outside

the 99% confidence level in each of these, for the range of σ(int) considered, while the flat ΛCDM

model with Ω0m = 0.22 now lies mostly within the 60-99% confidence region.

This difference in probability of the different Crossing Statistics for the ΛCDM model with

Ω0m = 0.22 is due to this model having only one ‘crossing’ with the data. Adding extra hypothetical

crossings then has little affect on Ti, as the extra crossing points all cluster around the same z. A

model that fits the data better, with many crossings, however, should be expected to have Ti statistics

that increase with i. On this basis, one can then argue that for a model to be considered consistent

with the data it must show consistency across all crossing modes. The point here is that if there is

a significant crossing of the data and the model, then it should show up in the Crossing Statistics

as a failure of Ti to decrease sufficiently with decreasing i. A flat ΛCDM model with Ω0m = 0.22 is

therefore considered non-viable because of the discrepancy in TI , even though TII and TIII show some

degree of consistency.

In summary, we have presented a new statistic that can be used to distinguish between different

cosmological models using their goodness of fit with supernovae data. We have shown that the differ-

ent Crossing Statistics are sensitive to the shapes and trends of the data and the assumed theoretical

model, and are in general less sensitive to the unknown intrinsic dispersion of the data than χ2. This

is exemplified by the fact that the consistency between a model and a data set does not change much,

even when we assume large additional intrinsic errors. The Crossing Statistic appears to us to be
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a promising method of confronting cosmological models with supernovae observations, and can be

straightforwardly generalized to other datasets where similar problems occur.
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