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1. Introduction 

The results of this paper are joint with Prof. D. Pfeifer (Germany) and Dr. Yu. Chernikov 

(Ukraine). We present an approach to the investigation of natural catastrophe claims (e.g., with 

respect to wind storm losses). The so-called Nevzorov’s record model, see Nevzorov (1988), is 

studied. We suppose that the yearly catastrophe claims are realizations of an independent 

sequence }1,{ ≥iX i  of random variables (r.v.) with support =+ :R [ ∞,0 ] and continuous 

cumulative distribution function (cdf) },1,{ ≥iFi  such that  

 ,)(i
i FF γ= with .1,)( 1 ≥= − γγγ ii                                             (1) 

Here F is a fixed continuous cdf with .0)0( =F  If 1>γ  then the iX ’s are stochastically 

increasing, and in a border case 1=γ  the sequence is i.i.d.  

Within the semi-parametric approach the cdf F  is unspecified. And within the parametric 

approach we assume that F  belongs to the parametric class of Fréchet distributions (one of the 

extreme-value distribution classes) with unknown shape and scale parameters; our parametric 

model provides that a possible trend in the data is of exponential type. D. Pfeifer (1997) proposed 

to use a combination of parametric and semi-parametric methods to investigate catastrophe claims 

in the presence of trend. In the first step, the type of trend is analyzed using the number of record 
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values in the times series of claims data, and in the second step, a maximum-likelihood estimator 

(MLE) is constructed from the data taking into account what type of trend has been detected before. 

In order to check the validity of the model assumptions, the estimates for the trend parameter 

obtained from both steps are compared. In Kukush et al. (2004) the two approaches are compared 

for U.S. hurricane events from 1949 to 1992 and for Japanese typhoon events from 1977 to 1991, 

and implications for insurance applications are considered. 

Here we review some asymptotic properties of the MLE in Nevzorov’s record model and 

corresponding goodness-of-fit (GOF) tests. The asymptotic results were announced in Kukush 

(1999) and then proven in Kukush et al. (2004). The GOF tests were constructed in Kukush and 

Chernikov (2001), and in Kukush and Chernikov (2002) it was shown that in both semi-parametric 

and parametric models the MLE is asymptotically efficient in the sense of Hajék bound. 

The paper is organized as follows. Section 2 introduces Nevzorov’s record model. Section 3 

states the consistency, asymptotic normality, and efficiency of the semi-parametric MLE, and the 

semi-parametric GOF test is constructed. Section 4 gives similar results for the parametric model, 

and Section 5 reports the comparison of semi-parametric and parametric approaches in data 

analysis. 

 The proofs of the theorems can be found in Kukush et al. (2004) and Kukush & Chernikov 

(2001), (2002). 

 

2. Nevzorov’s record model 
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      In the model (1) define record indicators as ,1;11 == nII if },,...,max{ 11 −> nn XXX  and 

,0=nI otherwise, for .2≥n The record indicators are independent r.v. with 

.
...1
1)1(:)( 11 +−− +++

=== nnn IPp
γγ

γ γ  

The unknown parameter ,γ  see (1), is called trend parameter. Given the observations of record 

indicators till moment ,2≥n  the log-likelihood function for 1≥γ  is equal to  

)).(1(log)1()(log:)(
22

γγγ ∑∑ ==
−−+=

n

i iii
n

i in pIpIL                            (2)   

The semi-parametric MLE nγγ ˆˆ =  is defined as a measurable function of the observed record 

indicators for which γ̂ }.1),({maxarg ≥∈ γγnL  

 

3. Asymptotic properties of semi-parametric MLE and goodness-of-fit test 

Theorem 1:   Let .1≥γ Then the MLE γ̂  is strongly consistent. 

Theorem 2:  Let .1>γ  Then the MLE γ̂  is asymptotically normal, namely the normalized 

estimator )ˆ( γγ −nn converges in distribution to a normal law with mean 0 and variance 

).1(22 −=∞ γγσ  

Now, we state the asymptotic efficiency of the estimator in the sense of Hajék bound; see 

Ibragimov & Has’minskii (1981) for general theory of the asymptotic efficiency. Introduce the class 

2,eW  of bell-shaped loss functions. Those real-valued functions satisfy the following conditions: 

(a) wwRuuw ,0)0(;,0)( =∈≥  is continuous at 0=u  and is not identical .0  

(b) w  is even function. 

(c) w  is non-decreasing for .0≥u  
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(d) The growth of w  as +∞→u  is slower than any one of the functions .0),exp( 2 >εεu  

Denote by ξ  a standard Gaussian r.v. 

Theorem 3:   Let .10 >γ    

(a) For any real-valued function w  that is bounded, Borel measurable and continuous a.e. with  

respect to Lebesgue measure, it holds 

).()
ˆ
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(supinflimlim
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|:|0 0

ξ
γ

γγ
γγδγγγδ EwnwE n

n =
−

×
−<−∞→→  

(b) For any family *
nγ of estimators of ,γ based on observations of the record indicators and for  

any loss function ,2,eWw∈ the inequality holds: 
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The latter inequality gives a lower bound for the loss of arbitrary normalized estimator.  

Theorem 3 shows that the MLE has asymptotically the smallest possible averaged loss. 

Now, we pass to the GOF test. Let 0γ  be the true value of the trend parameter. One can 

show that with probability 1  the normalized log-likelihood function (2), ,/)(:)( nLQ nn γγ =  

converges uniformly on each interval [ ba, ]⊂ ),1( ∞+  to the functional ),( 0γγ∞Q such that for 

,1,1 0 >> γγ  

.log)1(log)1(),( 1
00 γγγγγ −−−= −

∞Q  

Theorem 4:   In semi-parametric model with 10 >γ  
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The GOF test for semi-parametric model is based on the next corollary. 

Corollary 5:   Under the conditions of Theorem 4, ).1,0()ˆ(/: NTV d
nnn →= γσ  

4. The three-parametric model 

Now, we assume that the cdf iF  for the yearly claims are of the form 

.0,...,2,1),)(exp()( 1 >=−= −− xnAxxF i
i

αγ  

Here ×+∞×+∞=Θ∈ ),0(),0(:),,( γαA [ ),1 +∞  are parameters of interest. Then the log-likelihood 

function for the observed data set nXX ,...,1  is given by 

).(log)(log)1(log
2

)1(:),,(
1

1
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αα αγαγγα −−
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Define the joint MLE of the parameters of interest as a measurable vector function )ˆ,ˆ,ˆ( γαA  

of nXX ,...,1  for which 

),,(maxarg)ˆ,ˆ,ˆ( γαγα ALA ∈ , 

where maximum is taken over .Θ  One can show that that the maximum here is attained 

eventually, that is for all ),(0 ωnn ≥  a.s. 

Theorem 6:   Let .1≥γ Then the joint MLE is strongly consistent, moreover 

,0)ˆ(,ˆ,ˆ →−→→ γγαα nAA  as ,∞→n  a.s. 

Thus, in the three-parametric model, the trend parameter γ  is better estimable than other  

two parameters. 

Theorem 7:   If 1>γ  then the joint MLE is asymptotically normal, namely the normalized 

estimator 

t
n

t
n nAATRRn ))logˆ(log,ˆ,ˆ()( 2/1 γγαα −−−  
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converges in distribution to a normal law with mean 0  and a unit covariance matrix, where the 

entries of the right triangular matrix nR  and symmetric matrix T are: 

,1,log,1,0, 332322131211 −=×=−==== nnnnnn RnRRRR
A

R
α
γ

α
α  

3
1,

2
,

6
,

2
1,,1 33232

2
22131211 ==+==== TTTTTT ττπτ . 

Here ,1 eγτ −= eγ  stands for Euler’s constant, .5772.0≈eγ  

Theorems 6 and 7 are applied to forecast claims. The observed yearly claims can be 

represented as 

,...2,1,)(),,(, 1/11/1 ==== −− iAAffZfX i
iiiii

αα γγα                           (4) 

Then the transformed observations ,..., 21 ZZ  form an i.i.d. sequence with standard Fréchet 

distribution .0),(exp)( 1 >−= − xxxF  We interpret the trend as a growth of the median of ,iX  

and relation (4) clearly shows that it is a trend of an exponential type. The forecast of claims for the 

year number nk >  will be 

.|)()ˆ,ˆ,ˆ(ˆ
ˆ

/1
1 αγα =×= t

t
kk ZmedAfX   

And Theorem 7 makes it possible to construct a confidence interval for the forecast based on the 

confidence region for the true values of .,, γαA  

In Kukush & Chernikov (2002), (2001) theorems analogous to Theorems 3 and 4 are proven 

for the joint MLE in the three-parameter model. Therefore, in this model the MLE is asymptotically 

efficient in the sense of Hajék bound, and a GOF test can be constructed based on the log-

likelihood function (3) and the MLE.  
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5. Analysis of U.S. and Japanese data 

Here we briefly report numerical results from Pfeifer (1997) concerning the following two data 

sets:  

(a) yearly claims in Million U.S. $ from U.S. hurricane events from 1949 to 1992, 

(b) yearly claims in 1000 JYen from Japanese typhoon events from 1977 to 1991. 

The graphical data displayed in logarithmic scale showed that the assumption of an  

exponential trend in the data was reasonable. A stochastic search procedure was performed to 

compute MLEs based on maximization of log-likelihood functions (2) and (3). The trend parameters 

were estimated from the three approaches: 

(a) semi-parametric as described in Section 2, 

(b) joint maximum likelihood as described in Section 4, 

(c) least squares – from the graphical analysis; here )ˆˆexp(ˆ mαγ =  where m̂  is the estimated  

slope for the regression line in logarithmic scale, and α̂  is the estimator of α  from the joint MLE. 

For the U.S. data, all the three approaches give nearly the same estimator for :γ  

.11.1;10.1;15.1ˆ ≈γ  

For the U.S., ,06.1ˆ ≈α  and the prediction line in logarithmic scale looks reasonable. 

The situation is not so clear for the Japan data, where respectively, 

.34.1;30.1;81.1ˆ ≈γ  

The shape parameter is estimated as .91.0ˆ ≈α  Thus, the Japan data have steeper trend 

compared with the U.S. data. For Japan, the prediction line looks unreasonable because of poor 

fitting of the three-parametric model. 
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 Next, in Kukush et al. (2004) asymptotic 95 percent confidence regions were constructed 

based on Theorems 2 and 7. Below we present those numerical results.    

U.S. data: 

(a) Semiparametric case. ).2814.1,0184.1(∈γ  

(b) The three-parametric case. Projections of the confidence ellipsoid are: 

).1188.1,0857.1();2492.1,8858.0();1679.0,0729.0( ∈∈∈ γαA  

Japan data: 

(a) Semiparametric case. ).6341.2,9856.0(∈γ  

(b) The three-parametric case. Projections of the confidence ellipsoid are: 

).3814.1,2147.1();1953.1,6236.0();0029.0,0003.0( ∈∈∈ γαA  

Thus, for U.S. data the confidence region is quite small, and for Japan data the region is 

larger. 

In Kukush et al. (2004) the efficiency of the proposed methods was illustrated via simulation. 

1000 series of n  random Fréchet distributed values were simulated with parameters ),,( γαA  

similar to one estimated on the U.S. and Japan data and with realistic .n  For those parameters 

the statistics were computed corresponding to Theorems 2 and 7, and we checked how many 

simulated data fall into the 95% confidence region. The simulations showed that the proposed 

methods can be applied even for small sample size, that insurance and re-insurance companies 

deal with, though the empirical coverage probability is often a bit less than 0.95 for 95% regions.  
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