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Introduction

Suppose that two treatments are being compared in a clinical trial. As the trial progresses, one
of the treatments may look more promising and it would be desirable to allocate a higher proportion of
patients to this treatment. In such cases, response-adaptive randomisation is used. The simplest such
rules may be represented as urn models, in which balls of different types are added to or removed from
the urn according to the previous assignments and responses. Having carried out the trial, we will
want to estimate parameters of interest. Although the usual estimators will be approximately unbiased
for trials with moderate to large numbers of patients, their biases may be appreciable for small to
moderate-sized trials and the corresponding confidence intervals may also have coverage probabilities
far from the nominal values.

Consider the following two-parameter model for the patient responses: y11, y12, . . . are random
variables with density f1(y; θ, η) and y21, y22, . . . are random variables with density f2(y; θ, η), where
θ is the parameter of interest, η is a nuisance parameter and (θ, η) ∈ Ω. The model is adaptive in
the sense that patients are assigned to treatments using response-adaptive randomisation, so that
the probability of assigning patient k + 1 to treatment 1 is a function of the previous k assignments
and responses. The aim of this work is to obtain an approximately pivotal quantity for θ, from
which corrected confidence intervals may be constructed which have coverage probabilities close to
the nominal values for trials with a small number of patients. The results will then be applied to two
examples.

The signed root transformation

It is well known that the likelihood function is not affected by the adaptive nature of the model;
see, for example, Berger and Wolpert (1984). Thus, the log-likelihood function based on y11, . . . , y1,n1

and y21, . . . , y2,n2 is

`(θ, η) =
n1∑

k=1

log{f1(y1k; θ, η)}+
n2∑

k=1

log{f2(y2k; θ, η)}.

Write θ̂ and η̂ for the maximum likelihood estimators, and η̂θ for the restricted maximum likelihood
estimator of η when θ is fixed. Let

`ij(θ, η) =
∂i+j

∂θi∂ηj
`(θ, η),

and suppose that

1
n

`(θ, η) → κ(θ, η) and
1
n

`ij(θ, η) → κij(θ, η)

in Pθ,η-probability for all (θ, η) ∈ Ω as n →∞, where κij is not necessarily the partial derivative of κ.
Let

Λθ = `(θ̂, η̂)− `(θ, η̂θ)
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and

Zn = Zn(θ) =
√

2Λθ sign(θ − θ̂).

Then Zn is the first component of the bivariate signed root transformation (e.g. Bickel and Ghosh,
1990), which is asymptotically standard normal as n →∞ under modest conditions. Thus, Zn may be
treated as a first approximation to a pivotal quantity. The aim of this work is to find data-dependent
quantities µ̂n and σ̂n such that

Z∗
n =

Zn − n− 1
2 µ̂n

σ̂n

is asymptotically standard normal to third order in the very weak sense of Woodroofe (1986).

Correction terms

Let Ni(n) denote the number of patients on treatment i after n assignments for i = 1, 2 and
suppose that

Ni(n)
n

→ ρi(θ, η)

in Pθ,η-probability for almost every (θ, η) ∈ Ω as n →∞, where ρi is a continuous function on Ω. To
define the correction terms, write

κ20(θ, η) = κ20(θ, η)− κ11(θ, η)2

κ02(θ, η)

and

κ30(θ, η) = κ30(θ, η)− 3
κ21(θ, η)κ11(θ, η)

κ02(θ, η)
+ 3

κ11(θ, η)2κ12(θ, η)
κ02(θ, η)2

− κ11(θ, η)3κ03(θ, η)
κ02(θ, η)3

.

Note that −κ20(θ, η) is the average observed Fisher information for θ per observation.
Now, it may be shown that

Eθ,η(Zn) ' 1√
n

µ(θ, η)

in the very weak sense, where

µ(θ, η) =
1√

−κ20(θ, η)

[
−1

3
κ30(θ, η)
κ20(θ, η)

− 1
2

κ12(θ, η)
κ02(θ, η)

+
1
2

∂
∂θκ20(θ, η)
κ20(θ, η)

+
∂
∂ηκ11(θ, η)

κ02(θ, η)

−1
2

κ11(θ, η)
κ02(θ, η)

∂
∂ηκ20(θ, η)

κ20(θ, η)
− 1

2

κ11(θ, η){2 ∂
∂ηκ02(θ, η)− κ03(θ, η)}
κ02(θ, η)2

]
.

This can be estimated by µ̂n = µ(θ̂, η̂). We also obtain the very weak approximation

Eθ,η

{(
Zn −

µ̂n√
n

)2
}
' 1 +

m(θ, η)
n

= σ2
n(θ, η),

say, where m(θ, η) has a very complicated form. Let σ̂2
n = σ2

n(θ̂, η̂).
Given a desired confidence level 0 < γ < 1, let

In = {θ : |Z∗
n(θ)| ≤ Φ−1(

1 + γ

2
)},

where Φ denotes the standard normal distribution function. Then

Pθ,η(θ ∈ In) = γ + o(
1
n

)
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as n →∞, in the very weak sense. Thus, In is an approximate 100γ% confidence interval for θ.
Remark 1. For normal models, κij = 0 for i + j ≥ 3, and the above formulae for µ(θ, η) and

m(θ, η) simplify dramatically.
Remark 2. When n is replaced by a family of stopping times t = ta depending on a parameter

a ≥ 1, more general formulae for µ(θ, η) and m(θ, η) are obtained which involve the limit of a/ta and
its first derivatives.

Examples

Example 1. Normal model. Suppose that y11, y12, . . . are normal random variables with mean µ

and unit variance and that y21, y22, . . . are normal random variables with mean ν and unit variance.
Let θ = (µ− ν)/2 and η = (µ + ν)/2. Then the log-likelihood function is

`(θ, η) = −1
2

[
n1∑

k=1

{y1k − (θ + η)}2 +
n2∑

k=1

{y2k − (η − θ)}2
]

,

where θ, η ∈ IR.
Consider the response-adaptive rule studied by Hayre and Gittins (1981) that randomises pa-

tients to treatment 1 with probability w(θ̂)/{1 + w(θ̂)}, where

w(θ) =


√

1 + 10θ, θ > 0,
1√

1+10|θ|
, θ ≤ 0.

Then we know that

ρ1(θ, η) =
w(θ)

1 + w(θ)

and

ρ2(θ, η) =
1

1 + w(θ)
.

It follows easily that

κ20(θ, η) = κ02(θ, η) = −1, κ11(θ, η) = −ρ1(θ, η) + ρ2(θ, η)

and κij(θ, η) = 0 for i + j ≥ 3. So we have

κ20(θ, η) = −4ρ1(θ, η)ρ2(θ, η).

It may then be shown that

µ(θ, η) =
1
4

{1− 2ρ1(θ, η)}
{ρ1(θ, η)ρ2(θ, η)}

3
2

∂ρ1(θ, η)
∂θ

and

σ2
n(θ, η) = 1 +

µ(θ, η)2

n
.

Example 2. Binary model. Suppose that y11, y12, . . . are Bernoulli random variables with param-
eter p1 and that y21, y22, . . . are Bernoulli random variables with parameter p2. Let θ =

√
p1q2/(p2q1)

and η =
√

p1p2/(q1q2), where qi = 1− pi for i = 1, 2. Then the log-likelihood function is

`(θ, η) =
n1∑

k=1

y1k log(θη) +
n2∑

k=1

y2k log(
η

θ
)− n1 log(1 + θη)− n2 log(1 +

η

θ
),

where θ, η > 0.
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Consider the drop-the-loser rule introduced by Ivanova (2003) that randomises patients to the
treatments using an urn model. The initial urn composition is one ball of each treatment type and
an immigration ball. When the immigration ball is drawn, one ball of each treatment type is added.
When one of the treatment type balls is drawn and there is a success, the ball is returned; otherwise,
the ball is not returned. Then we know that

ρ1(θ, η) =
θ(1 + θη)

2θ + η + θ2η

and

ρ2(θ, η) =
θ + η

2θ + η + θ2η
.

It follows that

κ20(θ, η) = − η(θ2 + 1 + 2θη)
θ(1 + θη)(θ + η)(2θ + η + θ2η)

, κ02(θ, η) =
θ2

η2
κ20(θ, η)

and

κ11(θ, η) =
1− θ2

(1 + θη)(θ + η)(2θ + η + θ2η)
.

So we have an expression for κ20(θ, η). Using the above results and further calculations, we can obtain
a formula for µ(θ, η), which does not simplify. The expression for m(θ, η) has a complicated form and
has not yet been calculated.

Simulation results

The simulation results are based on 10,000 replications. In order to assess the accuracy of the
approximations, the coverage probabilities are reported for both the first-order pivot, Zn, and the
corrected pivot, Z∗

n.
Monte Carlo results for Example 1 are presented in Tables 1 and 2 when n = 25 and n = 50,

respectively. Note that one patient was allocated to each treatment initially, as in Woodroofe and
Coad (2002). Results are also included for the expected sample size on the better treatment, E(N1).
We took ν = 0, so that θ = η. The results show that the use of Zn always yields coverage probabilities
within two standard errors of the nominal values, even when θ is large, and that there is no noticeable
improvement when Z∗

n is used.

Table 1. Monte Carlo estimates of expected sample sizes and coverage probabilities for

the normal model when n = 25

Zn Z∗
n

θ E(N1) 95% 90% 95% 90%
0.5 17.0 0.952 0.901 0.952 0.900
0.75 18.0 0.953 0.897 0.952 0.894
1.0 18.6 0.952 0.903 0.950 0.902
1.25 19.0 0.952 0.903 0.952 0.903
1.5 19.3 0.952 0.906 0.952 0.906
2.0 19.8 0.953 0.903 0.952 0.903
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Table 2. Monte Carlo estimates of expected sample sizes and coverage probabilities for

the normal model when n = 50

Zn Z∗
n

θ E(N1) 95% 90% 95% 90%
0.5 34.9 0.951 0.902 0.949 0.900
0.75 36.6 0.950 0.903 0.949 0.903
1.0 37.8 0.952 0.903 0.952 0.904
1.25 38.7 0.952 0.902 0.952 0.902
1.5 39.4 0.954 0.903 0.954 0.902
2.0 40.4 0.953 0.904 0.953 0.904

Monte Carlo results for Example 2 are presented in Tables 3 and 4 when n = 25 and n = 50,
respectively. Note that one patient was allocated to each treatment initially. The estimates of θ and η

were also modified by adding 0.5 to the numbers of successes and failures. Results are again included
for E(N1). This time, the results show that the use of Zn always yields coverage probabilities less than
the nominal values, especially if the difference between p1 and p2 is large. However, when Zn− µ̂n/

√
n

is used, most of the coverage probabilities are within two standard errors of the nominal values.

Table 3. Monte Carlo estimates of expected sample sizes and coverage probabilities for

the binary model when n = 25

Zn Zn − µ̂n/
√

n

p1 p2 E(N1) 95% 90% 95% 90%
0.7 0.5 13.9 0.932 0.880 0.951 0.902
0.5 0.3 13.7 0.927 0.866 0.943 0.897
0.4 0.2 13.7 0.940 0.862 0.961 0.898
0.55 0.5 12.8 0.942 0.893 0.955 0.908
0.7 0.3 15.1 0.933 0.863 0.961 0.896
0.8 0.5 14.7 0.933 0.870 0.958 0.909

Table 4. Monte Carlo estimates of expected sample sizes and coverage probabilities for

the binary model when n = 50

Zn Zn − µ̂n/
√

n

p1 p2 E(N1) 95% 90% 95% 90%
0.7 0.5 28.6 0.943 0.887 0.949 0.899
0.5 0.3 28.1 0.941 0.887 0.952 0.899
0.4 0.2 28.0 0.944 0.893 0.955 0.901
0.55 0.5 25.9 0.942 0.886 0.949 0.895
0.7 0.3 31.6 0.934 0.881 0.947 0.896
0.8 0.5 30.5 0.937 0.878 0.950 0.892

Extension to higher dimensions

Now suppose that there are p ≥ 2 nuisance parameters, so that η = (η1, . . . , ηp)T . Then we can
extend the approach which has been developed for a single nuisance parameter to higher dimensions.
However, such a generalisation is considerably more complicated, both algebraically and analytically.

To appreciate the nature of the calculations involved, consider the correction term µ(θ, η). Al-
though this will have the same form as that for the single nuisance parameter case, the formulae for
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κ20(θ, η) and κ30(θ, η) are now much more complicated. For example, κ11(θ, η) becomes a p-vector
and κ02(θ, η) a p× p matrix.

Discussion

We have shown how to construct corrected confidence intervals for the parameter of interest for
data from an adaptively randomised clinical trial when there is a nuisance parameter. The accuracy
of the approximations has been assessed by simulation for two examples.

The focus here has been interval estimation and the biases of the usual estimators have not been
studied. For the binary case, Coad and Ivanova (2001) show that the biases are of order 1/n and
approximate them for several urn designs.

A similar approach can be applied when a stopping time is incorporated. For some related work,
see Coad and Woodroofe (1997) for the censored survival data case and Coad and Govindarajulu (2000)
for the binary case.
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RÉSUMÉ

Supposons que deux traitements soient, dans le cadre d’une étude clinique, comparés avec mod-
ification du ratio de randomisation en fonction des réponses observées. A la fin de l’étude, nous nous
intéressons à l’estimation des paramètres d’intérêt. Bien que les estimateurs usuels soient approxima-
tivement sans biais pour un moyen ou grand nombre de patient, leurs biais pourraient être appréciables
pour les essais de petite ou moyenne taille et les intervalles de confiance correspondants pourraient
également avoir des probabilités de couverture loin de la valeur nominale. Un modèle adaptatif à
deux paramètres est étudié dans lequel il y a un paramètre d’intérêt et un paramètre de nuisance.
Les intervalles de confiance corrigés, basés sur la transformation racine signé, sont construits pour le
paramétre d’intérêt. Les intervalles ont des probabilités de couverture proche de la valeur nominale
pour des essais de petite taille. La précision des approximations est évaluée par simulation pour les
deux exemples.
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