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Long term forecasting of snow avalanches 

Snow avalanches occur frequently in many mountainous regions in winter. Hence, winter tourism is 
strongly susceptible to avalanche danger, whereas it is a vital and growing economic sector for mountain 
townships. Furthermore, because of the limited space available in these areas, exposition of settlements to 
snow avalanches has strongly increased during the last decades. 

Casualties to back country skiers are relatively accepted by populations as soon as skiers evolve under 
their own responsibilities in risky terrain, knowing the daily risk level. On the contrary, casualties due to 
damages to infrastructures (roads and buildings, Figure 1) are no longer accepted. Indeed, whereas mountain 
inhabitants have had to accept a high level of risk during the past centuries, today’s inhabitants, permanents 
and tourists, want the same safety level as everyone else in the country while they are staying in their houses 
or travelling on their roads. 

It must be emphasised that no evacuation is possible after the avalanche has been released because of 
the extreme rapidity of the phenomenon. Preventive evacuations are sometimes attempted at the valley scale, 
but they can have catastrophic consequences if an event occurs when many people are on the road. As a 
consequence, a comprehensive alert phase to manage avalanche risk remains for the moment out of reach, 
and a simple message advising people to stay at home (possibly in cellars or in reinforced common 
buildings) can be considered as the best option for stake holders during critical situations. On the other hand, 
avalanche sites are well localised, with often historical testimonies available. This offers an appropriate basis 
for long term forecasting including the precise definition of hazard zones and the construction of permanent 
defence structures. 

 
Figure 1: Building destroyed by a powder snow avalanche 

 
20 January 1981, La Morte township, Isère, France (picture F. Valla/Cemagref). 
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Methods for evaluating high magnitude avalanches, and aim of this talk 
A crucial step for proposing relevant long-term mitigation measures is the accurate definition of 

reference avalanches, i.e. of dangerous scenarios likely to occur. Following the example of flood mitigation, 
the existing guidelines generally use probabilistic definitions based on the return level. This is especially true 
since the catastrophic 1999 winter (SLF Davos, 2000) that has entrained a search for normalisation and equal 
exposition to risk at the European scale.  

For evaluating high magnitude avalanches, direct use of standard extreme value theory (EVT, Coles 
2001) is difficult, because of the strong dependency of the distribution of runout distances, the most critical 
variable, on path’s geometry. Furthermore, for the structural design of buildings and defense structures, other 
variables such as impact pressure and flow depth must also be considered, and available series are usually 
too short and incomplete to fit multivariate extreme value models (e.g. Schlather, 2002) that corresponds to 
the engineers’ needs. 

Two traditional approaches exist. The first is based on simple statistical relations between runout 
distances and topographic descriptors of the avalanche path (e.g. Lied and Bakkehoi, 1980), with possible 
inclusion of concepts from EVT (Keylock, 2005). The second relies on deterministic propagation models 
based on the resolution of constitutive equations for the fluid in motion (e.g. Bartelt et al. 1999) associated 
with extreme snowfalls and tabulated friction parameters (Salm et al., 1990).  

More recently, explicit combinations of a numerical propagation model with stochastic operators 
describing the variability of its inputs-outputs have emerged (e.g. Barbolini and Keylock, 2002; Meunier and 
Ancey, 2004). Main interests of such a “statistical-dynamical” approach is to take into account the 
topographic dependency of snow avalanche runout distances, and to impose the correlation structure by 
physical rules, so as to simulate the different marginal distributions of interest, including those for which no 
or little data is available, with a reasonable realism (Figure 2). Crucial problems are then model inference, 
and finding a reasonable compromise between precision of the description of the flow and computation times. 

 
Figure 2: Principle of a statistical-dynamical approach  

 

Avalanche numerical model from Naaim et al. (2004). Vertical avalanche dam, Rabuis, Switzerland 

(picture F. Rapin/Cemagref). 
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Bayesian methods are now seeing growing interest to overcome these difficulties (Ancey, 2005; Eckert 
et al., 2008a), and process the different variability/uncertainty sources in a consistent manner up to the 
engineering decision. The aim of this talk is to illustrate some of these developments, first for calibrating a 
numerical avalanche model, then for evaluating multivariate high magnitude avalanches, quantifying the 
effect of a defense structure on avalanche hazard and risk, and perform the optimal design of the defense 
structure by minimizing expected losses. The different aspects of the approach are illustrated with real case 
studies from the French Alps. 

It must be noted that here hierarchical modelling is just used as a way of modelling variability from one 
avalanche to another on a given site under the strong assumption of time stationarity. Hence, spatio-temporal 
dependences to transfer information from one path to another and take into climate change effects are not 
considered. The spatio-temporal context is however a natural and fruitful extension of the framework worth 
to be mentioned (Eckert et al., 2007a; 2010a). 
 
Runout distance, return period and reference scenarios 

Formally, in a statistical-dynamical approach, the magnitude of each avalanche i is described by a 

couple of random vectors( ),i ix y . The ix  are the input variables corresponding to avalanche release and 

propagation: release area and altitude, snow depth, humidity and grain size, etc. The iy  are the output 

variables of interest in long term forecasting: runout distance, velocity and pressure fields. For evaluating 

annual probabilities and return periods, the avalanche occurrence rate is also necessary, so that the number of 

avalanche occurring each year ta  must also be modeled. Simulations allow reconstructing the joint 

distribution 
^

, ,p x y aθ 
 
 

 by conditioning in agreement with the physics of the phenomenon:  

^ ^ ^ ^

, , , , ,p x y a p y a x p x a p aθ θ θ θ       = × ×       
       

 (1) 

The quantity 
^

θ  indicates that the obtained distribution depends on a vector of unknown quantities for 

which point estimates 
^ ^ ^

,M Fθ θ θ =  
 

 are assumed to be available. Mθ  and Fθ  correspond to avalanche 

magnitude and frequency, respectively. 

The return period 
stopxT  corresponding to the runout distance stopx  can be evaluated by combining the 

expected annual avalanche number 
^

FE Aθ 
 
 

 and 
^ ^

( )stop stop stop MF x P X x θ = ≤ 
 

, the estimated 

cumulative distribution function (cdf) of runout distances:  

^ ^

1

1 ( )
stopx

F stop

T

E A F xθ
=

   × −     

 (2) 

As an illustration, Figure 3 compares modelled and empirical return periods for a case study. The 

avalanche propagation model is a depth-averaged set of equation describing mass and momentum 

conservation. The stochastic magnitude model for the correlated quantitative characteristics that vary from 

one avalanche to another is described in Eckert et al. (2010b). It uses conditional distributions and mixed 
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additive effects. The stochastic frequency model is a simple Poisson distribution independent from 

avalanche’s magnitude, which leads to a pseudo Peak Over Threshold (POT) model where the threshold 

corresponds to avalanche release and the magnitude is given by the multivariate statistical-dynamical model. 

Model fit is reasonable. 

The joint distribution of the exceedances 
^

,
TM stop stopp y x xθ > 

 
 summarizes the characteristics of 

all avalanche events attaininf the abscissa 
Tstopx . It can therefore be considered as the joint distribution of all 

the reference scenarios corresponding to the return period T . In the simulation set-up, it can simply be 

obtained by considering only the events for which the runout distance exceeds 
Tstopx .  

This partially counters the limitations of the return period for a multivariate hazard by giving the 
variation range that has to be considered for any return period. Figure 4 illustrates this point with marginal 
distributions of maximal velocity, Froude number, drag coefficient and impact pressure at a 10 year return 
period abscissa. The Froude number distribution allows quantifying the flow regime. Recent developments 
have been employed to compute impact pressures taking into account the rheology of snow, and, for instance, 
the increase of the drag coefficient relating velocity to impact pressure for slow dense flows (Naaim et al., 
2008). 
 

Figure 3: Return period for the runout distance on a two-dimensional topographical profile 

 

Avalanche model and case study from Eckert et al. (2010b). 

 

Bayesian inference and prediction 

To solve the crucial problem of the choice of the multivariate input distribution 
^

,p x a θ 
 
 

, the most 

natural solution is to estimate θ  using the available data. For a non invertible model, even non explicit for 

its outputs, Bayesian inference using MCMC methods (e.g. Brooks, 1998; Gilks et al., 2001) is well adapted. 

In Bayes’ theorem, ( ), ,l x y aθ  is the probability of the data under the assumption that they are 

independent realizations of ( ), ,p x y aθ , and ( )p θ  a prior distribution representing extra-data 
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information about non observable quantities, which can be used to introduce expert knowledge into the 

analysis. ( )p dataθ  is the joint posterior distribution of model unknowns quantifying the remaining 

uncertainty given the limited data sample available: 

( ) ( ) ( ), ,p data p l x y aθ θ θ∝ ×  (3) 

It must be emphasized that here the generic notation ( )p dataθ  includes, in addition to model 
parameters, latent random variables: the quality of snow varying from one avalanche to another (friction 
parameters), and “true” simulated runout distances possibly different from observations. Hence, full 
inference about model parameters implies reconstructing these unobserved quantities, and integrating out 
over their distribution (Tanner, 1992). Implementation using a sequential Metropolis-Hastings algorithm and 
details to tune the algorithm in practice are given in Eckert et al. (2010b). 

 
Figure 4: distribution of the output variables conditional to the exceedence of a 10 year 

return period abscissa 

 
a) Maximal velocity, b) Froude number, c) Drag coefficient and d) Impact pressure computed 

following Naaim et al. (2008), for an obstacle typical diameter od =0.25 m. Avalanche model and 

case study from Eckert et al. (2010b) 

 

Bayesian prediction is then an interesting option to evaluate the uncertainty associated with the chosen 

reference scenarios, mainly runout distances corresponding to high magnitude return periods (Eckert et al., 

2007b). The predictive distribution ( )
Tstopp x data  for the runout distance 

Tstopx  corresponding to the 

return period T  is obtained by averaging 
Tstopx  over the posterior distribution of magnitude and frequency 

unknowns. The quantile to be picked up is determined using the inverse cumulative distribution of runout 
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distance 1

stopxF − . Its dispersion depends on data quantity, and asymptotically it converges to the true point 

value 
Tstopx : 

( ) ( )1 1
1 ,

T stopstop x M F M F

F

p x data F p data d d
T E A

θ θ θ θ
θ

−
 

= − × × × 
 ×    

∫  (4) 

As an illustration, Figure 5 presents the predictive distribution of the decennial and centennial abscissas 
for a case study. A sliding block model describing avalanche propagation is embedded within a stochastic 
model similar to the one discussed previously. The sharp peak in the decennial distribution shows the strong 
influence of topography, since it corresponds to the beginning of the valley bottom (the slope tends to zero), 
stopping a high proportion of avalanches. Furthermore, the strong dispersion and asymmetry of the 
centennial distribution shows well that uncertainty about model unknowns strongly affects the most extreme 
avalanches, and that values much higher that the best bet prediction must be envisaged. 

 
Figure 5: Predictive distribution of runout distances 

    
Abscissas corresponding to return periods of a) 10 years and b) 100 years. Avalanche model 

and case study from Eckert et al. (2009). 
 
Risk evaluation for the design of a defense structure 

The multivariate nature of snow avalanche hazard creates difficulties when trying to use legal 
thresholds such as the 100 year return period in practice. Cappabianca et al. (2008) list other important 
reasons that make hazard-oriented approaches insufficient to quantify avalanche risk. First, they do not 
consider the elements at risk, which makes it impossible to compare the level of exposure of different 
mountain communities to avalanche hazard, and of a given mountain community to different natural hazards 
such as debris flows, landslides, and rock falls. Second, they do not allow confronting different mitigation 
strategies such as land use planning policies, temporary evacuations or construction of permanent defence 
structures. This is clearly not adapted to the current context of limited public funds which requires testing 
different solutions and searching optimality. 

To overcome these limitations, a quantitative risk evaluation combining a loss function and the hazard 
model is an interesting option, especially for the design of defense structures. However, optimal design 
methods remain for now little developed in the avalanche field, and simple cost-benefit analyses are 
generally preferred. Here the effect of including a dam in a stochastic avalanche model is studied, and the 
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height of the dam dh  that maximizes the economical benefit of its construction is searched. 
A loss function ( ), ,dC h y a  depending on the dam height and on the avalanche hazard in the runout 

zone, where the elements at risk (people, buildings, traffic roads, etc.) are situated, must be specified. It 
depends on the number, nature and vulnerability (i.e., damage susceptibility to avalanche hazard) of these 
elements at risk. The choice is made to work in terms of total risk starting at the date of the dam construction 
rather than in annual values. This implies, under the assumption of stationarity of the avalanche phenomenon, 
introducing the actualization factor A  for expressing the losses resulting from future damages in the 
current monetary unit. For simplicity, construction costs are taken into account using a linear additive form, 
and damages to the defense structure are neglected in first approximation. Furthermore, a single element at 
risk is considered, a building situated at a given abscissa of the runout zone, leading to the total loss function: 

( ) ( )1, , , ,d o d d F M dC h y a C h A E a C h yθ θ= + ×  ×   (5), 

where ( )1 ,dC h y  is the loss resulting from the avalanche magnitude y  with the dam height dh , 

,d F ME aθ θ    is the annual exceedence rate of the dam abscissa depending on avalanche frequency and 

magnitude models (censoring of the full POT model with a higher threshold), and oC  the linear 

construction cost. 

For more complex systems at risk including several elements, total risk is simply the sum of the risk to 
each of the considered elements. Main limitation is then that one must be able to express all of the elements 
by the same unit. For instance, a critical point which is often debated is how to take human lives into account, 
and compare them to pieces of equipment. Similarly, difficulties also arise if one wants to consider the less 
tangible elements at risk and compare them to material values. Mathematical convenience is to follow 
insurance techniques and to express everything in the same monetary currency. Alternatively, all the 
computations can be carried out by considering only one kind of element at risk, for instance human lives or 
buildings, leading to a risk that has to be interpreted as an expected number of deaths or destroyed buildings. 

Following Von Neuman and Morgenstern (1953)’s seminal work in economics, the classical risk CR   

is the expected damage, depending on the decision variable, on the chosen loss function, and on the 

avalanche magnitude and frequency models for which point estimates 
^ ^

,M Fθ θ 
 
 

 are assumed to be known: 

( )
^ ^ ^ ^ ^

1, , , ,C d M F o d d M F d MR h C h A E a C h y p y dyθ θ θ θ θ     = + × × × ×         
∫  (6) 

Finally, to evaluate ( )1 ,dC h y , the influence of the dam on relatively rapid avalanche flows is 
expressed as a linear relation between the runout distance reduction and the ratio between the dam height, 

dh , and the depth of the avalanche flow without the dam (Faug et al., 2008). With a simple exponential 
distribution of avalanche runouts and a 0-1 “step” vulnerability function leading to a total destruction of the 
building as soon as it is attained, this all leads to an easy quantification of the residual hazard and of the 
residual risk as functions of the dam height and of the building position in the runout zone (Figure 6). 

Seen rather as a function of dh , the classical risk can be minimized to determine the dam height that 
maximizes the benefit from the dam construction: 

^ ^
* Arg min , ,

dC h C d M Fh R h θ θ  =   
  

 (7) 

Figure 7 goes back to a multivariate numerical avalanche model. The vulnerability formulation used is 
derived from those available in the literature, relating the damage to the building to impact pressure in a 
simple semi-empirical way (Barbolini et al., 2004). Risk evaluation is performed numerically for each dam 
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height by Monte Carlo integration for a building situated at a 100 year return period abscissa. The obtained 
risk function is nicely shaped, with a clear optimal height *

Ch =5m corresponding to the minimization of 
expected losses. For dam heights lower than the optimum, the expected losses decrease when the dam height 
increases. For higher dams, the expected losses increase again, indicating that the additional protective effect 
no longer compensates the additional construction cost. 

 

Figure 6: Residual hazard and residual risk after a dam construction 

    
a) Annual quantile 

Tstopx   for different dam heights dh . b) Residual risk representing the 
total expected loss as a function of the abscissa position of a single building bx   for different dam 
heights. Analytical model and case study from Eckert et al. (2008b). 
 

Bayesian optimal design 
Separating decision from model inference may however bias the decision in an undesirable way, 

because classical calibration to obtain point estimates for (,F Mθ θ ) is generally performed by minimization 
of a variance criterion, e.g. of a symmetrical quadratic function, whereas, in the context of natural hazards, 
the penalty to be applied for the decision is clearly asymmetrical. As an obvious example, the total losses 
increase much more strongly if an avalanche dam height is overestimated by a given value than if it is 
underestimated by the same amount. Again, this problem is fairly addressed within the Bayesian framework 
by averaging over the posterior distribution, leading to the Bayesian risk:  

( ) ( ) ( ), , ,B d C d M F M F M FR h R h p data d dθ θ θ θ θ θ= × × ×∫  (8) 

From a practical point of view ( )B dR h  is, a function of dh  only instead of being a function of 
model parameters also, making the search of the optimal height  ( )( )* Arg min

dB h B dh R h=  that minimises 
the expected losses easier. From a more theoretical point of view, it can be shown that *

Bh  has suitable 
properties with regards to the statistical risk, see below. 

In the illustrative example, the Bayesian optimal height is 20% higher (6m versus 5m) than the 
classical one, and the benefit expected from the construction of the optimal dam is 54% higher when the 
Bayesian computation is used (41 465 €) than when the classical computation is used (28 863). The absolute 
difference ( ) ( )* *

B BR h R h− =14 602 € can be interpreted as the expected opportunity loss for the Bayesian 
decision rule against the minimization of expected losses under the classical paradigm. It is attributable to the 
limited sample size of avalanche runouts on the case study. In other words this is the value quantifying what 
the decision maker should be ready to pay to obtain perfect information with full confidence, i.e. to fund an 
exhaustive data collection protocol. Optimal properties of Bayes’ decision rules grant that other decisional 
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procedures would yield a lower expected profit for the decision maker (Wald, 1950). Note also that the 
systematic difference between the Bayesian and classical optimal heights increases from 5% to 250% for 
return periods of the building abscissa ranging from 10 to 1 000 years (not shown). Taking estimation error 
into account therefore affects, in particular, the optimal design of a defence structure protecting buildings 
threatened only by the most extreme events, a crucial point in an engineering context. 
 
Figure 7: Classical and Bayesian optimal design of an avalanche dam. 

    
Risk model and case study from Eckert et al. (2009). Risk represents the opposite of the expected 

benefit as a function of the dam height, i.e. the baseline risk is subtracted from the expected loss for 

each dam height. A single building situated at a 100-year abscissa position without dam is 

considered. 
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