Title: Unequal Probability Sampling

Analyzing Optional Randomized Response on Qualitative \& Quantitative Variables Bearing Social Stigma

Author: Arijit Chaudhuri

Affiliation: Indian Statistical Institute, Kolkata, India.

Abstract

: We illustrate a few popular Randomized Response Techniques to elicit responses to sensitive items. Both qualitative and quantitative characteristics are covered. General Sampling Schemes even without replacement are permitted. Also allowed is an undisclosed option to respond directly instead. Certain relevant procedures are critically examined.

Introduction:

We consider a finite population $U=(1, . ., i, . ., N)$ of a known number N of persons identified by respective labels 1 through N. On U is defined a vector $\underline{Y}=\left(y_{1}, . ., y_{i}, \ldots, y_{N}\right)$ of values y_{i} of a variable y for the ith person, $i \in U$. By $Y=\sum_{1}^{N} y_{i}$ we denote the population total which we require to unbiasedly estimate from a sample s chosen from U according to a design P with a probability $p(s)$. For P the inclusionprobability $\pi_{i}=\sum_{s э i} p(s)$ for every i and also the probability $\pi_{i j}=\sum_{s э i, j} p(s)$ for every pair (i, j), $i \neq j$ are supposed to be positive. We shall restrict to an estimator for Y of the form

$$
\begin{equation*}
t_{b}=\sum_{1}^{N} y_{i} b_{s i} I_{s i} \tag{1}
\end{equation*}
$$

Here $I_{s i}=1 / 0$ if $i \in s /(i \notin s)$ and $b_{s i}$ for every s and every i is free of the co-ordinates of \underline{Y}.

Introducing some non-zero numbers $w_{i}, i \in U$ and writing $d_{i j}=\sum_{s} p(s)\left(b_{s i} I_{s i}-1\right)\left(b_{s j} I_{s j}-1\right)$ and $\beta_{i}=\sum_{j} d_{i j} w_{j}$ it is well-known that provided $\sum_{s} p(s) b_{s i} I_{s i}=1 \forall i \in U, t_{b}$ has its design based expectation $E_{p}\left(t_{b}\right)=\sum p(s) t_{b}=Y \forall \underline{Y}$ i.e t_{b} is unbiased for Y and its design variance is

$$
\begin{equation*}
V_{p}\left(t_{b}\right)=\sum y_{i}^{2} C_{i}+\sum \sum y_{i} y_{j} C_{i j} \tag{2}
\end{equation*}
$$

writing $C_{i}=\sum_{s} p(s) b_{s i}^{2} I_{s i}-1$ and $C_{i j}=\sum_{s} p(s) b_{s i} b_{s i j} I_{s i j}-1, I_{s i j}=I_{s i} I_{s j}$. Alternatively, vide Chaudhuri (2010) $V_{p}\left(t_{b}\right)=-\sum_{i} \sum_{j} w_{i} w_{j} d_{i j}\left(\frac{y_{i}}{w_{i}}-\frac{y_{j}}{w_{j}}\right)^{2}+\sum \frac{y_{i}^{2}}{w_{i}} \beta_{i}$

A particular case of t_{b} is $t_{H}=\sum \frac{y_{i}}{\pi_{i}}$, the Horvitz \& Thompson's (1952) estimator with a variance $V=V_{p}\left(t_{H}\right)=\sum y_{i}^{2}\left(\frac{1-\pi_{i}}{\pi_{i}}\right)+\sum_{i \neq} \sum_{j} y_{i} y_{j}\left(\frac{\pi_{i j}-\pi_{i} \pi_{j}}{\pi_{i} \pi_{j}}\right)$.
for which an alternative form is

$$
V^{\prime}=V_{p}\left(t_{H}\right)=\sum_{i<} \sum_{j}\left(\pi_{i} \pi_{j}-\pi_{i j}\right)\left(\frac{y_{i}}{\pi_{i}}-\frac{y_{j}}{\pi_{j}}\right)^{2}+\sum \frac{y_{i}^{2} \alpha_{i}}{\pi_{i}}
$$

writing $\alpha_{i}=1+\frac{1}{\pi_{i}} \quad \sum_{j \neq i} \pi_{i j}-\sum_{i} \pi_{i}$
We shall consider two separate cases, namely (I) Qualitative when y_{i} takes only one of the 2 possible values 1 or 0 and (II) Quantitative when every y_{i} may take any real value. In case (I) in each of the formulae (2) - (5) above each y_{i}^{2} is to replaced by y_{i} for $i \in U$ and we shall refer to the revised formulae as (2)' (5)' .

Introducing constants $C_{s i}$ and $C_{s i j}$'s free of \underline{Y} subject respectively to $\sum p(s) C_{s i} I_{s i}=C_{i}, \sum_{s} p(s) C_{s i j} I_{s i j}=C_{i j}$ it follows from (2) and (3) that

$$
\begin{equation*}
v=v_{p}\left(t_{b}\right)=\sum y_{i}^{2} C_{s i} I_{s i}+\sum_{i} \sum_{j} y_{i} y_{j} C_{s i j} . \tag{6}
\end{equation*}
$$

has $E_{p} v_{p}\left(t_{b}\right)=V_{p}\left(t_{b}\right)$ i.e v is unbiased for $V_{p}\left(t_{b}\right)$ and

$$
\begin{equation*}
v^{\prime}=v_{p}^{\prime}\left(t_{b}\right)=-\sum_{i} \sum_{j} w_{i} w_{j} d_{s i j} I_{s i j}\left(\frac{y_{i}}{w_{i}}-\frac{y_{j}}{w_{j}}\right)^{2}+\sum \frac{y_{i}^{2}}{w_{i}} \beta_{i} I_{s i} / \pi_{i} . \tag{7}
\end{equation*}
$$

with $d_{s i j}$'s as constants free of \underline{Y} subject to $\sum_{s} p(s) d_{s i j} I_{s i j}=d_{i j}$, satisfies $E_{p} v_{p}^{\prime}\left(t_{b}\right)=V_{p}^{\prime}\left(t_{b}\right)$ so that $v_{p}^{\prime}\left(t_{b}\right)=v^{\prime}$ is unbiased for $V_{p}^{\prime}\left(t_{b}\right)$. Of course in case (I) every y_{i}^{2} should be replaced by y_{i} in the formulae (6) - (7) and when so done these formulae labelled as (6) ${ }^{\prime}-(7)^{\prime}$.

Next we consider the main problem when y_{i} values may not be directly ascertained from the sampled persons labelled in U because they relate to sensitive and stigmatizing issues. Then a standard practice is to elicit randomized responses (RR) from the persons sampled in suitable ways. Section 2 below presents a few standard RR devices.

2. Certain RR Devices

Case I. (i) Warner's (1965) RR device as reformulated by Chaudhuri (2001) is as follows. A person labelled i if sampled is presented a box of identical cards differing only in being marked A or A^{C} in proportions $p:(1-p),\left(0<p \neq \frac{1}{2}<1\right)$. If i bears a stigmatizing characteristic A, then $y_{i}=1$; otherwise $y_{i}=0$. Randomly choosing a card from the box before putting it back the person responds I_{i}; this $I_{i}=1$ if the card type matches the person's trait A or A^{C}; else $I_{i}=0$. Writing E_{R}, V_{R} as the operators for expectation and variance generically for any RR device it follows that

$$
\begin{gathered}
E_{R}\left(I_{i}\right)=p y_{i}+(1-p)\left(1-y_{i}\right)=(1-p)+(2 p-1) y_{i} \text { and } \\
V_{R}\left(I_{i}\right)=E_{R}\left(I_{i}\right)\left(1-E_{R}\left(I_{i}\right)\right)=p(1-p) \quad \text { since } \quad I_{i}^{2}=I_{i} \quad \text { and } y_{i}^{2}=y_{i} . \text { Writing } \\
r_{i}=\frac{I_{i}-(1-p)}{(2 p-1)} \text {, one gets } E_{R}\left(r_{i}\right)=y_{i} \text { and } V_{R}\left(r_{i}\right)=\frac{p(1-p)}{(2 p-1)^{2}}=V_{i}, \text { say. }
\end{gathered}
$$

We shall assume $E_{p} E_{R}=E_{R} E_{p}=E$, say, and $E_{p} V_{R}+V_{p} E_{R}=E_{R} V_{p}+V_{R} E_{p}=V$, say.
Consequently, writing $\underline{R}=\left(r_{1}, \ldots, r_{i}, . ., r_{N}\right)$, and $R=\sum r_{i}$,
$e_{b}=\left.t_{b}\right|_{\underline{Y}=\underline{R}}=\sum r_{i} b_{s i} I_{s i}$ and $e_{H}=\left.t_{H}\right|_{\underline{Y}=\underline{R}}=\sum \frac{r_{i^{\prime}}}{\pi_{i}}$ one gets $E\left(e_{b}\right)=E_{p}\left(t_{b}\right)=E_{R}(R)=Y$ and also $E\left(e_{H}\right)=E_{p}\left(t_{H}\right)=E_{R}(R)=Y$ i.e both e_{b} and e_{H} are unbiased for Y. Further,

$$
\begin{aligned}
V\left(e_{b}\right) & =V_{p}\left[E_{R}\left(e_{b}\right)\right]+E_{p}\left[V_{R}\left(e_{b}\right)\right] \\
& =V_{p}\left(t_{b}\right)+E_{p}\left[\sum V_{i} b_{s i}^{2} I_{s i}\right] \\
& =\sum y_{i} C_{i}+\sum_{i \neq} \sum_{j} y_{i} y_{j} C_{i j}+\sum V_{i}\left(1+C_{i}\right) \\
& =E_{R} E_{p}\left[\sum r_{i} C_{s i} I_{s i}+\sum_{i \neq} \sum_{j} r_{i} r_{j} C_{s i j} I_{s i j}\right]+E_{R} E_{p}\left[\sum V_{i}\left(\frac{1}{\pi_{i}}+C_{s i}\right) I_{s i}\right] .
\end{aligned}
$$

So, $v\left(e_{b}\right)=\sum r_{i} C_{s i} I_{s i}+\sum_{i \neq} \sum_{j} r_{i} r_{j} C_{s i} I_{s i j}+\sum V_{i}\left(\frac{1}{\pi_{i}}+C_{s i}\right) I_{s i}$.
is an unbiased estimator for $V\left(e_{b}\right)$. Alternatively,

$$
\begin{aligned}
V\left(e_{b}\right) & \left.\left.=V_{R} \mid E_{p}\left(e_{b}\right)\right]+E_{R} \mid V_{p}\left(e_{b}\right)\right] \\
& =V_{R}\left(\sum_{i} r_{i}\right)+E_{R}\left[-\sum_{i \neq} \sum_{j} w_{i} w_{j} d_{i j}\left(\frac{r_{i}}{w_{i}}-\frac{r_{j}}{w_{j}}\right)^{2}+\sum \frac{r_{i}^{2}}{w_{i}} \beta_{i}\right] \\
& =\sum V_{i}+\left[-\sum_{i \neq} \sum_{j} w_{i} w_{j} d_{i j}\left(\frac{V_{i}+y_{i}}{w_{i}^{2}}+\frac{V_{j}+y_{j}}{w_{j}^{2}}-\frac{2 y_{i} y_{j}}{w_{i} w_{j}}\right)+\sum \frac{V_{i}+y_{i}}{w_{i}} \beta_{i}\right] \\
& =-\sum_{i \neq} \sum_{j} w_{i} w_{j} d_{i j}\left(\frac{y_{i}}{w_{i}}-\frac{y_{j}}{w_{j}}\right)^{2}+\sum \frac{y_{i}}{w_{i}} \beta_{i}+\sum V_{i}\left[1-\frac{\beta_{i}}{w_{i}}\right]
\end{aligned}
$$

Let $v^{\prime}\left(e_{b}\right)=-\sum_{i \neq} \sum_{j} w_{i} w_{j}\left(\frac{r_{i}}{w_{i}}-\frac{r_{j}}{w_{j}}\right)^{2} d_{s i j} I_{s i j}+\sum \frac{r_{i}}{w_{i}} \frac{\beta_{i}}{\pi_{i}} I_{s i}+\sum V_{i} \frac{I_{s i}}{\pi_{i}}$
Then, $E_{R} v^{\prime}\left(e_{b}\right)=-\sum_{i \neq} \sum_{j} w_{i} w_{j}\left[\left(\frac{y_{i}}{w_{i}}-\frac{y_{j}}{w_{j}}\right)^{2}+\frac{V_{i}}{w_{i}^{2}}+\frac{V_{j}}{w_{j}^{2}}\right] d_{s i j} I_{s i j}+\sum \frac{y_{i}}{w_{i}} \beta_{i} \frac{I_{s i}}{\pi_{i}}+\sum V_{i} \frac{I_{s i}}{\pi_{i}}$

$$
E v^{\prime}\left(e_{b}\right)=E_{p} E_{R}\left[v^{\prime}\left(e_{b}\right)\right]
$$

$$
=-\sum_{i \neq} \sum_{j} w_{i} w_{j} d_{i j}\left(\frac{y_{i}}{w_{i}}-\frac{y_{j}}{w_{j}}\right)^{2}+\sum \frac{y_{i}}{w_{i}} \beta_{i}+\sum V_{i}\left(1-\frac{\beta_{i}}{w_{i}}\right)
$$

Then, $v^{\prime}\left(e_{b}\right)$ is unbiased for $V\left(e_{b}\right)$.
Again,

$$
\begin{aligned}
V\left(e_{H}\right) & =V_{p}\left(E_{R}\left(e_{H}\right)\right)+E_{p}\left[V_{R}\left(e_{H}\right)\right] \\
& =V_{p}\left(\sum_{i \in s} \frac{y_{i}}{\pi_{i}}\right)+E_{p}\left[V_{R}\left(e_{H}\right)\right] \\
& =\sum y_{i}\left(\frac{1-\pi_{i}}{\pi_{i}}\right)+\sum_{i \neq} \sum_{j} y_{i} y_{j}\left(\frac{\pi_{i j}-\pi_{i} \pi_{j}}{\pi_{i} \pi_{j}}\right)+\sum \frac{V_{i}}{\pi_{i}}
\end{aligned}
$$

So, $v\left(e_{H}\right)=\sum r_{i}\left(\frac{1-\pi_{i}}{\pi_{i}}\right) \frac{I_{s i}}{\pi_{i}}+\sum_{i \neq} \sum_{j} r_{i} r_{j}\left(\frac{\pi_{i j}-\pi_{i} \pi_{j}}{\pi_{i} \pi_{j}}\right) \frac{I_{s i j}}{\pi_{i j}}+\sum \frac{V_{i}}{\pi_{i}} \frac{I_{s i}}{\pi_{i}}$
is an unbiased estimator for $V\left(e_{H}\right)$. Alternatively,

$$
\begin{aligned}
V\left(e_{H}\right) & \left.=V_{R}\left(E_{p}\left(e_{H}\right)\right)+E_{R} \mid V_{p}\left(e_{H}\right)\right] \\
& =\sum_{i} V_{i}+E_{R}\left[\sum_{i<} \sum_{j}\left(\frac{r_{i}}{\pi_{i}}-\frac{r_{j}}{\pi_{j}}\right)^{2}-\left(\pi_{i} \pi_{j}-\pi_{i j}\right)+\sum \frac{\alpha_{i}}{\pi_{i}} r_{i}^{2}\right] \\
& =\sum_{i<} \sum_{j}\left(\pi_{i} \pi_{j}-\pi_{i j}\right)\left(\frac{y_{i}}{\pi_{i}}-\frac{y_{j}}{\pi_{j}}\right)^{2}+\sum \alpha_{i} \frac{y_{i}}{\pi_{i}}+\sum \frac{V_{i}}{\pi_{i}}\left(1-\pi_{i}\right) .
\end{aligned}
$$

An unbiased estimator for this $V\left(e_{H}\right)$ is

$$
\begin{equation*}
\nu^{\prime}\left(e_{H}\right)=\sum_{i<} \sum_{j}\left(\pi_{i} \pi_{j}-\pi_{i j}\right)\left(\frac{r_{i}}{\pi_{i}}-\frac{r_{j}}{\pi_{j}}\right)^{2} \frac{I_{s i j}}{\pi_{i j}}+\sum \alpha_{i} \frac{r_{i}}{\pi_{i}} \frac{I_{s i}}{\pi_{i}}+\sum \frac{V_{i}}{\pi_{i}}\left(1-\alpha_{i}-\pi_{i}\right) \frac{I_{s i}}{\pi_{i}} \ldots \ldots \ldots \ldots(\tag{9}
\end{equation*}
$$

While employing Warner’s (1965) RR device some respondents may be found to opt for giving out the actual facts treating the item not stigmatizing at all. Let a part s_{1} of the sample s chosen with probability $p(s)$ yield the true values y_{i} for $i \in s_{1}$ but in the remainder s_{2} of the sample s only r_{i} for $i \in s_{2}$ is available on applying the Warner's (1965) RR technique as narrated already.

Then we may consider in estimating $Y=\sum y_{i}$, the three entities namely $t_{b}=\sum y_{i} b_{s i} I_{s i}=\sum_{i \in s} y_{i} b_{s i}, \quad e_{b}=\sum_{i \in s} r_{i} b_{s i} \quad$ and $\quad e_{b}^{\prime}=\sum_{i \in s_{1}} y_{i} b_{s i}+\sum_{i \in s_{2}} r_{i} b_{s i} . \quad$ Writing $e_{b}=\sum_{i \in s_{1}} r_{i} b_{s i}+\sum_{i \in s_{2}} r_{i} b_{s i}$, we may note $E_{R}\left(e_{b} \mid y_{i}, i \in s_{1}\right)=e_{b}^{\prime}$ $E_{R}\left(e_{b}^{\prime}\right)=t_{b}=E_{R}\left(e_{b}\right)$. Denoting the conditional expectation-operator $E_{R}\left(\bullet \mid y_{i}, i \in s_{1}\right)$ by $E_{C R}$ let us note following Chaudhuri \& Saha (2005),

$$
\left.\begin{array}{rl}
E_{R}\left(e_{b}-e_{b}^{\prime}\right)^{2} & =E_{R}\left[\left(e_{b}-t_{b}\right)-\left(e_{b}^{\prime}-t_{b}\right)\right]^{2} \\
& =V_{R}\left(e_{b}\right)+V_{R}\left(e_{b}^{\prime}\right)-2 E_{R}\left(e_{b}^{\prime}-t_{b}\right) E_{C R}\left(e_{b}-t_{b}\right) \\
& =V_{R}\left(e_{b}\right)-V_{R}\left(e_{b}^{\prime}\right) \text { giving }
\end{array}\right\}
$$

So, $V\left(e_{b}^{\prime}\right)=E_{p} V_{R}\left(e_{b}^{\prime}\right)+V_{p} E_{R}\left(e_{b}^{\prime}\right)$

$$
\begin{equation*}
=E_{p} V_{R}\left(e_{b}\right)-E_{p} E_{R}\left(e_{b}-e_{b}^{\prime}\right)^{2}+V_{p} E_{R}\left(e_{b}\right) \text { because } E_{R}\left(e_{b}^{\prime}\right)=E_{R}\left(e_{b}\right) . \tag{11}
\end{equation*}
$$

Thus, $V\left(e_{b}^{\prime}\right)=V\left(e_{b}\right)-E_{p} E_{R}\left(e_{b}-e_{b}^{\prime}\right)^{2}$
So, one unbiased estimator for $V\left(e_{b}^{\prime}\right)$ is $v_{1}\left(e_{b}^{\prime}\right)=v\left(e_{b}\right)-\left(e_{b}-e_{b}^{\prime}\right)^{2}$
Noting, $\quad E_{R}\left(e_{b}-e_{b}^{\prime}\right)^{2}=E_{R}\left[\sum_{i \in s_{1}}\left(r_{i}-y_{i}\right) b_{s i}\right]^{2}=\sum_{i \in s_{1}} V_{i} b_{s i}^{2} \quad$ it follows that an alternative unbiased estimator of $V\left(e_{b}^{\prime}\right)$ is $v_{2}\left(e_{b}^{\prime}\right)=v\left(e_{b}\right)-\sum_{i \in s_{1}} V_{i} b_{s i}^{2}$.

From (11) it follows that if some sampled people opt to give out the true responses while some others produce randomized responses then a greater efficiency in estimation may be achieved on going for utilization of the known direct responses combined with the randomized responses gathered from two complementary parts of the sample.

There is an alternative approach in handling optional RR's. We report Chaudhuri \& Dihidar’s (2009) work in this context in brief. In trying to unbiasedly estimate the proportion θ of people bearing a stigmatizing characteristic a person sampled i, say, may be approached with a request either to (1) give out the genuine truth about bearing A or
its complement A^{C} or alternatively to (2) implement Warner's (1965) RRT offering a box of cards in proportions $p:(1-p),\left(0<p \neq \frac{1}{2}<1\right)$ marked A rather than A^{C}.

Let $y_{i}=1 / 0$ if i bears A / A^{C},
$I_{i}=1 / 0$ if i finds a 'match' in the card-type versus his/her real feature and $C_{i}\left(0<C_{i}<1\right)$ be an unknown probability that i responds using the option (1) above rather than (2).

Letting

$$
\begin{aligned}
\mathrm{z}_{i} & =y_{i} \text { with probability } C_{i} \\
& =I_{i} \text { with probability }\left(1-C_{i}\right)
\end{aligned}
$$

it follows that

$$
E_{R}\left(z_{i}\right)=C_{i} y_{i}+\left(1-C_{i}\right)\left[p y_{i}+(1-p)\left(1-y_{i}\right)\right]
$$

To estimate y_{i} it is an easy course to eliminate C_{i} by getting an independent response z_{i}^{\prime} from i allowing a second box to execute Warner's (1965) RRT with a different proportion $p^{\prime}\left(p^{\prime} \neq p, 0<p^{\prime}<1\right)$ of A / A^{C}-marked cards.

Then, one may work out $r_{i}=\frac{\left(1-p^{\prime}\right) z_{i}-(1-p) z_{i}}{\left(p-p^{\prime}\right)}$ so as to get $y_{i}=E_{R}\left(r_{i}\right)$ and also, $V_{R}\left(r_{i}\right)=E_{R}\left(r_{i}-1\right) r_{i}$ so that $v_{i}=r_{i}\left(r_{i}-1\right)$ is an unbiased estimator for $V_{i}=V_{R}\left(r_{i}\right)$. Then, corresponding to $t_{b}=\sum_{i \in s} y_{i} b_{s i}$ one may employ $f_{b}=\sum_{i \in s} r_{i} b_{s i}$ to unbiasedly estimate $Y=\sum y_{i}$. Then one may unbiasedly estimate $V\left(f_{b}\right)=E_{p} V_{R}\left(f_{b}\right)+V_{p} E_{R}\left(f_{b}\right)=E_{R} V_{p}\left(f_{b}\right)+V_{R} E_{p}\left(f_{b}\right)$ by $\hat{V}_{1}\left(f_{b}\right)=\sum_{i \in s} v_{i}\left(b_{s i}^{2}\right)+\left[\left(\sum_{i \in s} r_{i} C_{s i}+\sum_{i \neq} \sum_{j} r_{i} r_{j} C_{s i j}\right)\right] \quad$ and \quad also by $\hat{V}_{2}\left(f_{b}\right)=\sum_{i \in s} v_{i}\left(b_{s i}\right)+\left[\sum_{i \in s} r_{i} C_{s i}+\sum_{i \neq j} \sum_{\in s} r_{i} r_{j} C_{s i j}\right]$.

Again, if the stigmatizing variable refers to real numbers like days of drunken driving, numbers of induced abortions, amount spent on gambling etc, then also an optional RR approach may work as follows, vide Chaudhuri \& Dihidar (2009).

Suppose a person labelled i may, with an unknown probability C_{i} give out the true value of y_{i} or with the complementary probability $\left(1-C_{i}\right)$ give an RR on executing a trick as follows.

Suppose the person i is offered a box carrying cards marked $a_{1}, . ., a_{j}, . ., a_{m}$ and a second box with cards marked $b_{1}, b_{2}, \ldots, b_{L}$ with a request to independently take one card from each and report the value $I_{i}=a_{j} y_{i}+b_{k}$, say and independently repeat this exercise to likewise report a second value $I_{i}^{\prime}=a_{u} y_{i}+b_{v}^{\prime}$, say, using a $3^{\text {rd }}$ box with cards marked $b_{1}^{\prime}, \ldots, b_{L}^{\prime}$.

Letting $z_{i}=y_{i}$ with probability C_{i}
$=I_{i}$ with probability $\left(1-C_{i}\right)$
and $z_{i}^{\prime}=y_{i}$ with probability C_{i}

$$
=I_{i}^{\prime} \text { with probability }\left(1-C_{i}\right)
$$

and defining $\mu_{a}=\frac{1}{m} \sum_{j=1}^{m} a_{j}, \quad \mu_{b}=\frac{1}{L} \sum_{1}^{L} b_{k}, \quad \mu_{b}^{\prime}=\frac{1}{L} \sum_{1}^{L} b_{k}^{\prime} \neq \mu_{b} \quad$ one may work out

$$
\begin{aligned}
& E_{R}\left(z_{i}\right)=C_{i} y_{i}+\left(1-C_{i}\right)\left(y_{i} \mu_{a}+\mu_{b}\right) \\
& E_{R}\left(z_{i}^{\prime}\right)=C_{i} y_{i}+\left(1-C_{i}\right)\left(y_{i} \mu_{b}+\mu_{b}^{\prime}\right)
\end{aligned}
$$

yielding $r_{1 i}=\left(\mu_{b}^{\prime} z_{i}-\mu_{b} z_{i}^{\prime}\right) /\left(\mu_{b}^{\prime}-\mu_{b}\right)$.
Repeating this exercise entirely once again one may work out a second independent observation $r_{2 i}$ distributed identically as $r_{1 i}$ to derive (A) $r_{i}=\frac{1}{2}\left(r_{1 i}+r_{2 i}\right)$ with $E_{R}\left(r_{i}\right)=y_{i}$
and (B) $v_{i}=\frac{1}{4}\left(r_{1 i}-r_{2 i}\right)^{2}$ with $E_{R}\left(v_{i}\right)=V_{i}=V_{R}\left(r_{i}\right)$.
The rest follows as in earlier cases, vide Chaudhuri (2011).

References

Chaudhuri, Arijit (2001). Using randomized response from a complex survey to estimate a sensitive proportion in a dichotomized finite population. J. Stat. Plan. Inf. 94, 37-42.
\qquad (2010). Essentials of Survey Sampling, Prentice Hall of India, New Delhi.
___ (2011). Randomized Response and Indirect Questioning Techniques in surveys. Chapman \& Hall, CRC Press, Taylor \& Francis Group, Boca Raton, FL.US.

Chuadhuri, Arijit and Dihidar, Kajal (2009).
Estimating means of stigmatizing qualitative and quantitative variables from discretionary responses randomized or direct. Sankhyā B71, 123-136.

Chaudhuri, Arijit \& Saha, Amitava (2005).
Optional versus compulsory randomized response techniques in complex surveys. J. Stat. Plan. Inf. 135, 516-527.

Horvitz, D.G. \& Thompson, D.J. (1952).
A generalization of sampling without replacement from finite universe. J. Amer. Stat. Assoc, 47, 663-685.

Warner, S.L. (1965). RR: a survey technique for eliminating evasive answer bias. J. Amer. Stat. Assoc. 60, 63-69.

