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1 Introduction

If the model F, underlying the data, is a regularly varying function with index −1/α, α > 0 it is usually
supposed that the top scaled order statistics Xn−j+1,n

Xn−k,n
, 1 ≤ i ≤ k, are Pareto distributed. Hill (1975)

derived a procedure of Pareto tail estimation by the MLE. Later on, many authors tried to robustify
the Hill estimator, but they still rely on maximum likelihood (Fraga Alves (2001) has introduced a
new lower bound, Gomes and Oliveira (2003), Li et al. (2010) introduced powers of original statistics).
However, the influence function of Hill estimator is slowly increasing, but unbounded. Hill procedure is
thus no robust and many authors tried to make the original Hill robust (see Beran and Schell (2010),
Vandewalle et al. (2007), ...). In Fabián (2001) a new score method of score moment estimators
has been proposed. It appeared that these score moment estimators are robust for a heavy tailed
distributions (see Stehĺık et al.(2010)). In this paper we understand ”The Hill estimator” as a specific
procedure for studying of the tail of Pareto distribution. Instead of implementing ”The Hill estimator”
procedure, we implement the score moment procedure. For the case of Pareto distribution, the Hill
estimator procedure with the score moment estimator has been investigated in Stehĺık et al.(2011) for
optimal testing for normality against Pareto tail. Since the score moment estimator is simple, it is
easy to implement it to the Hill procedure.

In literature, mainly the asymptotical properties of tail estimators are studied. However, in many
situations, asymptotics is simplifying the underlying process too much (see e.g. Huisman et al. (2001)).
We may illustrate this fact by a severe bias of the Hill based estimators or by a distributional insensitiv-
ity of asymptotical estimators. In many practical situations, such as operational risk assessment, data
are sparse (with n often bellow 50) and therefore robust estimator with good small sample properties
is needed.

Thus the aim of the paper is to introduce the distribution sensitive tail estimation procedure,
which is easy to implement for various distributions. Here we construct distribution-sensitive estima-
tors based on the Hills procedure using score moment estimators for other heavy-tailed distributions
(Pareto, Fréchet, Burr, log-gama, inverse gamma, etc.), and to study their statistical properties, both
theoretically (e.g consistency, asymptotical distribution) and by means of simulation experiments (e.g.
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comparisons of exact effectiveness of our method for different heavy tailed distributions). A specific
problem is finding of an optimal threshold k, say, yielding a trade off in between of variance and bias of
the Hill estimator. Simulation results by Embrechts et al. (1997) showed that the Hill estimator and
its alternatives work well over large ranges of values for k in the case of Pareto distribution. However,
Hill estimator is often giving wrong results for distributions different from the Pareto one. Their ”Hill
horror plots” actually show deviations of the Hill estimates trending farther away from the true value
of the tail index as k is increased.

When MSE is employed to study the quality of estimation, then we are getting a bath-tube
shape of MSE against threshold k, since higher order statistics did not see the different underlying
distribution, however, first order statistics are very different (e.g. Frechet distribution as a Pareto tail
distribution, see Gomes and Oliveira (2003)).

In this paper we illustrate t-Hill. We also quantify the robustness and compare efficiency with
other competitors. The paper is organized as follows. In the next section we recall the theory of
scalar score. In section 3 we discussed the t-Hill estimator, introduced firstly in Stehĺık et al.(2011).
The section comparing t-Hill and Hill estimators follows. Therein contamination of underling data is
controlled by means of score variance of Pareto distribution. Comparisons show that t-Hill estimator
outperforms Hill estimator. In section 5 we introduce the t-Hill plot. We end with powers of selected
tests for normality against Pareto distribution.

2 Scalar score

Basic inference function of mathematical statistics, the score function, is a vector function. We have
introduced a scalar inference function, called a scalar score, which reflects main features of a continuous
probability distribution and which is simple. Its simplicity have made it possible to introduce new
relevant numerical characteristics of continuous distributions.

The scalar score has been introduced in three steps.
i) Let X be support of distribution F with density f , continuously differentiable according to

x ∈ X and let η : X → R be given by

η(x) =





x if X = R
log(x− a) if X = (a,∞)
log x

1−x if X = (0, 1).
(1)

Then the transformation-based score or shortly the t-score is defined by

T (x) = − 1
f(x)

d

dx

(
1

η′(x)
f(x)

)
.(2)

(2) expresses a relative change of a ’basic component of the density’, the density divided by the
Jacobian of mapping (1).

ii) As a measure of central tendency of distribution F (x) has been suggested the zero of the
t-score,

x∗ : T (x) = 0,

called the transformation-based mean or shortly the t-mean.
iii) Function

S(x; θ) = η′(x∗)T (x; θ),(3)

called the scalar score, has been suggested a scalar inference function of distribution F .

For a particular class of distributions with support R and location parameter µ, (3) is identical
with the score function of distribution F for µ. For a particular class of distributions with “partial”
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support X 6= R and “transformed location parameter” τ = η−1(µ) (distributions on X 6= R are taken
as transformed “prototypes” with support R”), (3) was proved to be identical with the score function
of distribution F for this parameter. For other distributions, (3) is a new function. The t-mean of
distributions with support R is the mode (if the distribution has the location parameter, the t-mean is
its value), the t-mean of distributions with partial support is the transformed mode of the prototype.

Instead of the ordinary moments, the score moments were introduced for any k ∈ N by relation

Mk(θ) = ESk =
∫

X
S(x; θ)kf(x; θ) dx,(4)

existing if f satisfies the usual regularity requirements. It appeared that the score moments are
often expressed by elementary functions of parameters. M1 = 0. The value M2 = ES2 of location and
transformed location distributions is, respectively, Fisher information for the location and transformed
location parameter. Accordingly, ES2 is the Fisher information for the t-mean. The reciprocal value

ω2 =
1

ES2
,(5)

the score variance, appeared to be a natural measure of the variability (dispersion) of the distribution
even in cases in which the usual variance does not exist.

For parametric distributions with vector parameter θ, x∗ = x∗(θ). Given data x1, ..., xn and a
model family {Fθ, θ ∈ Θ}, the sample characteristics of central tendency (“center”) and dispersion
(square of‘ ‘radius”) can be obtained as functions of the estimated parameters: the sample t-mean
x̂∗ = x∗(θ̂) and the sample score variance ω̂2 = ω2(θ̂). Estimates θ̂ of θ are usually the maximum
likelihood estimates or some robust M-estimates in cases of heavy-tailed distributions or if considering
gross errors models. We introduced the score moment estimate as the solution of equations

θ̂SM :
1
n

n∑

i=1

Sk(xi; θ) = EθS
k, k = 1, ..., m,(6)

derived from (4) using the substitution principle.
It was shown that x̂∗ is consistent and asymptotically normal with variance given in Fabián (2008)

(see Fabián (2007)). The t-score moment estimators take into account the assumed form of the dis-
tribution, similarly as the maximum likelihood (ML) ones. However, since xi enters into estimation
equations by means of S(xi; θ) only and scalar scores of heavy-tailed distributions are bounded, the
score moment estimates are in cases of heavy-tailed distributions robust, or, in other words, the t-score
estimates of all parameters of heavy-tailed distributions are protected against outliers.

3 Hill-like estimator in case of Pareto distribution

In some cases, the first equation of (6) has a form

x̂∗SM :
n∑

i=1

S(xi;x∗) = 0.(7)

This is the case of the Pareto distribution P (α) with support X = [1,∞) and density

f(x) =
α

xα+1
.(8)

Using the mapping η = log(x− 1), η′(x) = 1/(x− 1), the t-score (2) is

T (x) = −1− (x− 1)f ′(x)/f(x) = α(1− x∗/x)

where the t-mean x∗ = (α + 1)/α. From (7), x̂∗ = x̄H x̄H = n/
∑n

1 1/xi is the harmonic mean, and

α̂ = 1/(x̂∗ − 1).
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It suggests to introduce a variant of the Hill estimator as

γ̂k =
1
α̂k

= H∗
k,n =

1

1
k

k∑
i=1

Xn−k,n

Xn−j+1,n

− 1,(9)

where harmonic mean is taken from the last k observed values with threshold Xn−k,n.
Let us call the estimator (9) the Hill score moment (sm) estimator. Since it is based on harmonic

mean, it is expected to be to a certain extent resistant to large observations so that it could yield
more realistic values than the ordinary Hill estimator.

4 Comparisons

The score variance of the Pareto distribution is ω2 = (α + 2)/α3. If ω = 1, we have γ = 1/α = 0.657.
Pareto distribution with score variance ω2 will be denoted by P (ω).

Hill and sm-Hill plots, denoted by H an H∗, respectively, for one random sample from Pareto
P (1) distribution are shown in Fig.1. The length of the sample is 1001 points. It is apparent that H∗

in his first part oscillates more than the ordinary Hill. The reason is that H∗ is sensitive to an abrupt
change of the threshold value. It could be, however, suppressed by a suitable smoothing.

Fig. 1

Fig. 2 shows variance bounds for Hnk and H∗
nk plots obtained as the average over 100 random

samples from P (1).

Fig. 2
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Fig. 3 Average Hk,n(×) and H∗
k,n(·) for different ω∗

Fig. 3 documents robustness of H∗ estimators. Every graph is an average over 100 random
samples from contaminated distribution

Pcont(1, ω) = εP (1) + (1− ε)P (ω∗)

for four different ω∗. Ratios of γ̂(m)/γ(1) for m=100, 250 and 900 and n = 1000 are given for Hm,n

and H∗
m,n in Table 1.

Table 1 Values r(m) = Hm,n/γ(ω∗) − 1 and r∗(m) = H∗
m,n/γ(ω∗) − 1 for Pcont with three

different ω∗ and ε = 0.05 and 0.1, respectively.
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ε ω∗ γ(ω∗) r(100) r∗(100) r(250) r∗(250) r(900) r∗(900)
1.5 0.879 .0363 .0376 .0235 .0187 .0184 .0170

.05 3 1.500 .2027 .1517 .1333 .0982 .0679 .0473
5 2.165 .4982 .3049 .2792 .1573 .1203 .0656

ε ω∗ γ(ω∗) r(100) r∗(100) r(250) r∗(250) r(900) r∗(900)
1.5 0.879 .0683 .0707 .0502 1.0458 .0339 .0296

.10 3 1.500 .3842 .2828 .2512 .1799 .1340 .0970
5 2.165 .9298 .6250 .5536 .3352 .2383 .1310

5 Hill-like plot

Under the concept of the Hill estimator we understand the successive averaging of ordered values up to
given k. The score moment estimator is usually simple so that it makes possible for many distributions
to apply a score moment Hill-like estimator. Consider for instance data generated from the log-gamma
distribution L(c, α) with support X = (1,∞) and density

f(z) =
cα

Γ(α)
(log z)α−1z−(c+1).(10)

In this case, a simple scalar score is obtained by the use of mapping η : (1,∞) → R in the form

η(x) = log(log x).

Since η′(x) = 1/(x log x), by (2)

T (x) =
1

f(x)
d

dx

(−(log x)cαx−c
)

= c log x− α

so that the ’loglog’ t-mean is x∗ = eα/c. As the ’second log-log moment’ ET 2 = E[c2 log2(x/x∗)] = α,
the estimation equations (6) are

n∑

i=1

c log xi − α = 0(11)

n∑

i=1

(c log xi − α)2 = α(12)

By setting ŝ1 = 1
k

∑k
i=1 log xi and ŝ2 = 1

k

∑k
i=1 log2 xi, it follows from (11) α̂ = ŝ1ĉ and from (12)

ĉ(ŝ2 − ŝ2
1) = ŝ1 so that the Hill-like estimate of the tail index (cf. Beirlant et al.(2005)) is given by

closed-form expression

γ̂k =
1
ĉ k

=
ŝ2

ŝ2
1

− 1.

The Hill-like estimates based on log-gamma distribution in Fig. 4 is denoted by Hlg. It is
apparent that the log-gamma hill-like estimator estimates the tail index properly whereas both Hnk

and H∗
nk, expecting heavier Pareto tail, show systematic decrease.
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Fig. 4

6 Power of selected tests for normality against Pareto distribution

In this section we present power of selected classical and robust tests for normality against Pareto
alternative distributions. For this purpose we assume Pareto (α, c) distribution for α ∈ {0.5, 1, 2, 5, 10},
c = 1. Simulation study has been performed with sample sizes n ∈ {n = 10, 15, 20, 25}, 100000
repetitions and the following tests of normality: the classical Jarque-Bera test (JB), the robust
Jarque-Bera test (RJB), the Shapiro-Wilk test (SW ), the Anderson-Darling test (AD), the Lilliefors
test (LT ), directed SJ test (SJdir), three medcouple tests (MC1, MC2,MC3) and selected RT tests
which were introduced in Stehĺık et al.(2011), i.e. RTJB9, RTJB39 and RTJB42 tests. Therein we
substantially used t-Hill estimator for Pareto tail to classify optimal test again given alternative.
Therefore, Table 2 presents the results of Monte Carlo simulations of power of analyzet tests against
Pareto (α, c = 1) alternative distributions.

Table 2: Power of analyzed tests against Pareto (α, c = 1) alternative distributions for n = 10, 15, 20 and 25
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n = 10 n = 15
test α = 0.5 α = 1 α = 2 α = 5 α = 10 α = 0.5 α = 1 α = 2 α = 5 α = 10
JB 0.886 0.757 0.610 0.444 0.403 0.979 0.912 0.799 0.650 0.585
AD 0.958 0.855 0.712 0.545 0.483 0.997 0.968 0.896 0.766 0.710
LT 0.916 0.765 0.585 0.416 0.367 0.990 0.920 0.787 0.611 0.540

RJB 0.885 0.745 0.579 0.414 0.366 0.976 0.897 0.767 0.602 0.533
SJdir 0.875 0.712 0.530 0.359 0.306 0.970 0.868 0.702 0.507 0.435
SW 0.966 0.870 0.741 0.578 0.518 0.998 0.976 0.921 0.809 0.760
MC1 0.635 0.445 0.330 0.251 0.218 0.770 0.550 0.398 0.285 0.259
MC2 0.217 0.150 0.121 0.107 0.105 0.425 0.253 0.174 0.141 0.121
MC3 0.732 0.507 0.361 0.261 0.229 0.914 0.711 0.530 0.375 0.327
RTJB9 0.956 0.857 0.707 0.556 0.484 0.994 0.953 0.863 0.721 0.656
RTJB39 0.825 0.669 0.501 0.366 0.308 0.973 0.894 0.758 0.588 0.516
RTJB42 0.441 0.284 0.193 0.137 0.130 0.748 0.543 0.394 0.286 0.244

n = 20 n = 25
test α = 0.5 α = 1 α = 2 α = 5 α = 10 α = 0.5 α = 1 α = 2 α = 5 α = 10
JB 0.997 0.974 0.908 0.789 0.716 1.000 0.993 0.961 0.875 0.830
AD 1.000 0.995 0.968 0.894 0.845 1.000 0.999 0.989 0.956 0.928
LT 0.999 0.978 0.902 0.753 0.676 1.000 0.994 0.958 0.862 0.791

RJB 0.996 0.963 0.879 0.740 0.656 0.999 0.987 0.939 0.825 0.765
SJdir 0.993 0.941 0.810 0.624 0.528 0.998 0.973 0.880 0.705 0.609
SW 1.000 0.997 0.983 0.926 0.891 1.000 1.000 0.995 0.976 0.957
MC1 0.891 0.706 0.529 0.399 0.358 0.918 0.741 0.570 0.429 0.388
MC2 0.518 0.322 0.212 0.170 0.167 0.557 0.320 0.222 0.169 0.160
MC3 0.972 0.845 0.664 0.504 0.453 0.981 0.868 0.695 0.519 0.466
RTJB9 0.999 0.991 0.948 0.854 0.801 1.000 0.997 0.978 0.919 0.876
RTJB39 0.995 0.965 0.879 0.737 0.661 0.999 0.989 0.944 0.838 0.770
RTJB42 0.892 0.738 0.579 0.432 0.384 0.959 0.857 0.716 0.574 0.518

From the Table 2 we may conclude that:

• The Shapiro-Wilk test outperforms the other tests for normality.

• For small sample sizes n = 10, 15, 20 and 25 the RTJB9 outperforms JB test for all analyzed
Pareto alternatives. For example, power of the classical Jarque-Bera test against Pareto (α =
1, c = 1) alternative and very small sample size n = 10 is 0.757. In comparison, power of
RTJB9 test (test based on ”mean-median” robustification of the classical Jarque-Bera test - see
Stehĺık et al.(2011)) against the same alternative is 0.857 and is comparable with the Shapiro-
Wilk test, which has power of 0.870

• Power of the tests is decreasing with increase of the parameter α. For example, power of the
Shapiro-Wilk test against Pareto (α = 1, c = 1) alternative and small sample size n = 15 is
0.976 and against Pareto (α = 10, c = 1) alternative and the same sample size is 0.760.

• The smallest power show the medcouple tests and RTJB42 (test based on ”trimm-trimm” ro-
bustification of the classical Jarque-Bera test - see Stehĺık et al.(2011)).

Based upon our experience we can recommend using of the Shapiro-Wilk test and RTJB9 test
instead of the classical Jarque-Bera test (JB) and robust Jarque-Bera test (RJB), especially for small
and very small sample sizes.
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