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1 Industrial context of the model

Our present work is based on a simplified model which is related to the risk of dyke overflow during

a flood. We want to predict the water level in this case, with a number of variables availables : the

observed quantities are the water level at the dyke position Zc, the speed of the river V and the

observed flow of river Q. The unobservable quantities are the value of Strickler coefficient Ks as well

as the river bed level at the dyke Zv. In order to predict the future water level, we need to quantify

the non-observed variables Ks and Zv.

In this flooding model, if we define

• the data vector Y = (Zc, V )T ∈ R2;

• the non-observed vector X = (Ks, Zv)
T ∈ R2;

• the observed variable d = Q ∈ R1,

we can rewrite the measured observation Y as a function of the non-observed vector X, adding an

error U :

Y = (Zc, V )T + U = H(Ks, Zv;Q) + U.

In general, we consider the following model for the uncertainty treatment:

Yi = H(Xi, di) + Ui, (1 ≤ i ≤ n)(1)

with n the sample size, and

• (Yi) ∈ Rp denotes the data vectors;

• H denotes a known function from Rq+q2 to Rp which is expensive in CPU-time consumption and

often regarded as a ”black box”;

• (Xi) ∈ Rq denotes the non-observed random data which is assumed independent and identically

distributed (i.i.d.);

• (di) ∈ Rq2 denotes the observed variables related to the experimental conditions;

• (Ui) ∈ Rp denotes the measurement errors which are assumed i.i.d. Besides, the variables (Xi)

and (Ui) are assumed to be independent.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS002) p.1980



To solve this inverse problem we choose a Bayesian framework and we assume the following priori

distributions for the random variables Xi and Ui :

Xi |m,C ∼ Nq(m,C);

Ui ∼ Np(0, R), (1 ≤ i ≤ n),

which allows us to take into account the experts’ prior knowledge as well as to reduce the problem of

identifiability. Moreover, assuming a known R, the prior distributions of m and C can be defined as

follows :

m |C ∼ Nq(µ,C/a), with a an hyperparameter to be specified;

C ∼ IWq(Λ, ν) ∈Mq×q.

where IW denotes a Inverse-Wishart distribution. Typically, we want to estimate the posterior dis-

tribution of θ = (m,C) knowing the data Y = (Y1, . . . , Yn), which caracterizes the distribution of Xi.

We choose a Gibbs sampling to approximate the Bayesian posterior distributions. In order to define

a Gibbs sampler, noting X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), we calculate the full conditional

posterior distribution for each unknown quantity (m,C,X) :

m |C,Y,X, ρ ∼ N
( a

n+ a
µ+

n

n+ a
X,

C

n+ a

)
C |m,Y,X, ρ ∼ IW

(
Λ +

n∑
i=1

(m−Xi)(m−Xi)
′ + a(m− µ)(m− µ)′. ν + n+ 1

)
X |Y,m,C, ρ ∝ exp

{
− 1

2

n∑
i=1

[
(Xi −m)′C−1(Xi −m) + (Yi −H(Xi, di))

′R−1(Yi −H(Xi, di))
]}
.

(2)

with ρ the set of hyperparameters. As the last conditional distribution (2) of X is under a complicated

and strange form, it is necessary to apply a numerical method for simulation, Metropolis-Hastings for

example.

2 New kriging version of the model

In general, the CPU-time consuming for the function H is very large (for the reason of complicated

code of H). It is desirable to limit the number of calls to the function H. Here we propose a kriging

approximation method where Ĥ. H is regarded as the realisation of a Gaussian process H. To apply

this method, we choose a bounded hypercube Ω ⊂ RQ (Q = q+ q2) and generate a set of Nmax points

D = {z1, . . . , zNmax} ⊂ Ω with zi = (xi, di), applying a Latin Hypercube Sampling (LHS) - maximin

strategy, called a design. Our approximation is restricted to Ω and the number of calls to H is limited

to Nmax, noted by HD = {H(z1), . . . ,H(zNmax)}.

The predictor Ĥ is calculated as a conditional experance for any point z0 ∈ Ω

Ĥ(z0) = E(H(z0)|HD = HD),

and its conditional variance denoted by MSE(z0) (Mean Squared Error) can be seen as a mesure of

the prediction accuracy. Following this idea, each Yi can also be seen as a realisation of a new process
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Yi which corresponds with the Gaussian process H, we rewrite the current model:

Yi = Ĥ(Xi, di) + (H− Ĥ)(Xi, di) + Ui︸ ︷︷ ︸
= Ĥ(Xi, di) + Vi(Xi, di)(3)

with the new error term Vi(Xi, di) combining two types of variance : the R of the old error Ui and

the MSE of the kriging method. We regard especially the whole sample Y = (Y1, . . . ,Yn), which

permets us to consider the correlation between the predictions Ĥ(Zi) and Ĥ(Zj). Thus model (3) can

be written (assuming that p = 2 for simplicity):

Y =



Y1
1
...

Y1
n

Y2
1
...

Y2
n


=



Ĥ1
1 (Z1)

...

Ĥ1
n(Zn)

Ĥ2
1 (Z1)

...

Ĥ2
n(Zn)


+



V 1
1 (Z1)

...

V 1
n (Zn)

V 2
1 (Z1)

...

V 2
n (Zn)


= Ĥ(Z) + V (Z).(4)

We deduce its distribution given the variable Z = (Z1, . . . , ZNmax) and the function values HD of the

design:

Y |Z, HD ∼ N (Ĥ(Z),R + MSE(Z)),(5)

where R is a diagonal variance matrix:

R =



R11

. . .

R11

0

0

R22

. . .

R22


,

 n times n times

(6)

with Rii the i−th diagonal component of R; and MSE(Z) a block diagonal matrix composed by the

MSEi(Z) which is the variance-covariance matrix of Hi(Z):

MSE(Z) =


MSE1(Z) 0

0 MSE2(Z)


.

 n times n times

The conditional distribution of the vector X ∈ Rp×n knowing Y can be specified :

X |Y ,m,C, ρ,d, HD ∝ 1Ω

∣∣∣R + MSE(Z)
∣∣∣− 1

2
exp

{
− 1

2

n∑
i=1

[
(Xi −m)′C−1(Xi −m)

]

−1

2

((
Y1 − Ĥ(Z1)

)′
, . . . ,

(
Yn − Ĥ(Zn)

)′)(
R + MSE(Z)

)−1


(
Y1 − Ĥ(Z1)

)
...(

Yn − Ĥ(Zn)
)

}
.

(7)
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3 Hybrid MCMC Algorithm

We explicit the Gibbs algorithm as follows:

Given (m[r], C [r],X[r]) for r = 0, 1, 2, . . . , generate

1. C [r+1]| · · · ∼ IW
(

Λ +
∑n

i=1(m[r] −X [r]
i )(m[r] −X [r]

i )′ + a(m[r] − µ)(m[r] − µ)′, ν + n+ 1
)

2. m[r+1]| · · · ∼ N
(

a
n+aµ+ n

n+aX
[r], C

[r+1]

n+a

)
3. X[r+1]| · · · ∼?

The simulation of X[r+1] consists of l iterations of Metropolis-Hastings algorithm. By consequence,

our Gibbs sampling algorithm becomes a so-called hybrid MCMC algorithm, following Tierney (1994),

which simultaneously utilizes both Gibbs sampling steps and Metropolis-Hastings steps. In detail,

• Let X0 = (X1,0, . . . , Xn,0)′ = X[r]

• For s = 1, . . . , l, updating X[r] component by component (for i = 1, . . . , n):

1. Generate X̃i,s ∼ J(· | Xi,s−1) where J is a proposal distribution

2. Let

α(Xi,s−1, X̃i,s) = min
( π

Ĥ
(X̃s | Y , θ[r+1], ρ,d, HD) J(Xi,s−1|X̃i,s)

π
Ĥ

(Xs−1 | Y , θ[r+1], ρ,d, HD) J(X̃i,s|Xi,s−1)
, 1
)
,

(8)

where

X̃s =
(
X1,s, . . . , Xi−1,s, X̃i,s, Xi+1,s−1, . . . , Xn,s−1

)′
Xs−1 =

(
X1,s, . . . , Xi−1,s, Xi,s−1, Xi+1,s−1, . . . , Xn,s−1

)′
3. Accept

Xi,s =

{
X̃i,s with probability α(Xi,s−1, X̃i,s),

Xi,s−1 otherwise

4. Renovation Xs =
(
X1,s, . . . , Xi,s, Xi+1,s−1, . . . , Xn,s−1

)′
• X[r+1] = Xl

In Step 2 of the MH algorithm, we consider a gaussian proposal distributions J = N
(
m[r+1], C [r+1]

)
.
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4 Construction of an adaptive design

An important point for a kriging approximation is the choice of the design of experience (DoE).

In order to fill the whole field, we use a classic strategy called Latin Hypercube Sampling (LHS) -

maximin. But this general method is not always perfect, sometimes the design points are relatively far

from the true value of X and sometimes the MSE may explode at the edge of the experimental field.

We propose to construct a design adaptively by providing the additional information sequentially. The

substitution is as follows :

1. Fix Nmax as calculation budget and a proportion p of points.

2. Choose a hypercubic domain Ω where proxy is valid.

3. Build a design LHS-maximin D with p×Nmax points in Ω.

4. Decide whether the design is satisfactory (quality criterion). If it is, we call

the kriging predictor Ĥ and we run the Gibbs algorithm (M-H).

5. If it isn’t, we add the other (1− p)×Nmax points sequentially to the indicated

area according to an adaptive procedure to improve the quality of design.

The adaptive scheme requires many choices: the experimental field Ω; the proportion p of points

selected for the design LHS-maximin; a criterion to measure the quality of a design; the adaptive

strategy of adding the points, etc.

Small experience : with different number Nmax of points The number Nmax of points of

the design D is very important. If we increase this number, we improve the accuracy of the kriging

approximation. But on the other hand, the computation requires more time. In the following numerical

experiments, we consider three different cases : Nmax = 100, 300, 500. The Figure 1 gives us an

illustration : when we increase the points of the design D from 100 to 200, there is an obvious

decrease of the MSE.
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Figure 1: MSE with an increasing number Nmax of the points of D

Now we consider three LHS-maximin designs with 100 points, 300 points and 500 points and we

compare the posterior distributions of two parameters m and C by using these three kriging methods,

based on a sample of size 1000, drawn from the simulated Monte Carlo chain after the burn-in period.

We can notice a great difference when we apply the 100-point kriging.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS002) p.1984



22 24 26 28 30 32 34 36 38
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Distribution of m1

 

 
Posterior−kriging 100
Posterior−kriging 300
Posterior−kriging 500

Figure 2: m1
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Figure 3: m2
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Figure 4: C11
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Figure 5: C22

How to choose adaptively the Nmax points of design? Here we give a procedure well detailed

as follows :

1. Fix an experimental field Ω and generate a design D′ of p×Nmax (p = 90% for example)

points in Ω according to the LHS - maximin strategy.

2. Divide the field Ω densely enough (100×100×50 respectively for x1,x2 and d for

example).

3. At each grid point (x1, x2, d) = (x, d), we calculate its criterion value CD(x, d) with

two possible types :

(a) weighted criterion :

max
(x,d)∈E

MSE(x, d)α · π(x)1−α

where

π(x) ∝

[
1 + (x− µ)′

(
(1 +

1

a
) · Λ

)−1

(x− µ)

]− ν+1
2

,

and MSE(x, d) can be obtained easily with the package DACE;

(b) weighted criterion taking into account the yi (at iteration k) :

max
(x,d)∈E

MSE(x, d)α ·
∑
i

π(x|yi, θ[k])1−α

where π(x|yi, θ[k]) has to be updated at each iteration of MCMC.
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4. Complete the design sequentially with (1−p)×Nmax additional points which maximise

the criterion quantity. For the moment, we use only the first criterion by logarithm,

which means that

CD(x, d) = α log(MSE(x, d)) − ν + 1

2
(1− α) log

[
1 + (x− µ)′

(
(1 +

1

a
) · Λ

)−1

(x− µ)

]

where α could be chosen between 0 and 1.

If we take p = 90%, Nmax = 100, with different α we obtain the following graphs Figure 6, 7

and 8, where Figure 6 represents the design D′ with 90 points generated by LHS - Maximin plus 10

additional points with the biggest MSE value, and in Figure 7 and 8, we add 10 points according to

the MSE value as well as the prior distribution of X where the prior mean µ is all supposed [40, 48]′,

but the weight α = 0.8 for Figure 7 and α = 0.5 for Figure 8. The strategy of adding points does allow

us to diminish the kriging uncertainty. We can compare the final result : the posterior distributions

of the mean parameter m (Figure 9 and 10) in three cases and we use a 500-point-kriging result as a

reference. We find that in our example, with α = 1 (we only consider the MSE impact), the simulation

results satisfy us the most.
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Figure 6: α = 1
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Figure 7: α = 0.8
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Figure 8: α = 0.5
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Figure 9: m1
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Figure 10: m2

Why did we choose p = 90%? In fact, in order to make a best choice of p, we repeat the experiment

with different p and we obtain the following graph (Figure 11). Obviously, p = 80%− 90% seems to

be a good solution.

Remark : When we add the (1 − p) × Nmax points to D′, we have to distinguish their physical

positions to avoid adding all the points in the same area. So we construct the DoE sequentially by

adding one new point and recalculating the criterion CD each time.
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Figure 11: MSE with an increasing number of points to add

To illustrate the advantage of this adaptive idea, we compare the experimental results of the 100-

point-adaptive-kriging methods by always using a 500-point-kriging method as a reference (Figure 12,

13, 14 and 15). There is a great improvement when we apply the adaptive kriging method with 100

points, especially for m2 and C22.
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Figure 12: m1
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Figure 13: m2
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Figure 14: C11
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Figure 15: C22
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