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1. Introduction

Is it possible to measure sensitive behavior such as noncompliance with rules and regulations

that govern public life using surveys? Because it is well–known that questions about compliance

behavior with rules and regulations may not yield truthful responses, the randomized response (RR)

method has been proposed as a survey tool to get more honest answers to sensitive questions (Warner,

1965). In the original RR approach, respondents were provided with two statements, A and B, with

statement A being the complement of statement B. For example, statement A is ’I used hard drugs last

year’ and statement B is ’I did not use hard drugs last year’. A randomizing device, for instance, in the

form of a pair of dice determines whether statement A or B is to be answered. The interviewer records

the answer yes or no without knowing the outcome of the randomizing response device. Thus the

interviewee’s privacy is protected but it is still possible to estimate the probability that the sensitive

question (A and not-B) is answered positively.

Recent meta–analyses have shown that RR methods can outperform more direct ways of ask-

ing sensitive questions (Lensvelt, Hox, van der Heijden and Maas, 2005). Importantly, the relative

improvements in the validity increased with the sensitivity of the topic under investigation.

This paper will show recent developments of in the analysis of RR data, focusing on regression

models relating the sensitive question(s) measured with RR to explanatory variables. Thus we show

the developments in this field since pioneering work by Maddela (1983) and Scheers and Dayton (1988),

who showed how this relation can be studied by adjusting the logistic regression model.

In this manuscript the examples stem from surveys that we conducted for the Dutch government

on noncompliance in social welfare. In the Netherlands Dutch employees must be insured under the

Disability Insurance Act, the Unemployment Insurance Act, and the Welfare Insurance Act. Under

each of these acts, a (previously) employed person is eligible for financial benefits provided certain

conditions are met. For details on the design of the 2002 study we refer to Lensvelt-Mulders, van der

Heijden, Laudy and van Gils (2006).

Most of the examples focus on six RR questions, four of which are health– and the remaining
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two are work–related. The health questions are:

1. Has a doctor or specialist ever told you that the symptoms your disability classification is based

upon have decreased without your informing the Department of Social Services of this change?

2. At a Social Services check–up, have you ever acted as if you were sicker or less able to work than

you actually are?

3. Have you yourself ever noticed an improvement in the symptoms causing your disability, for

example in your present job, in volunteer work or the chores you do at home, without informing

the Department of Social Services of this change?

4. For periods of any length at all, do you ever feel stronger and healthier and able to work more

hours without informing the Department of Social Services of this change?

The work–related questions are:

1. Have you recently done any small jobs for or via friends or acquaintances, for instance in the

past year, or done any work for payments of any size without reporting it to the Department of

Social Services? (This only pertains to monetary payments.)

2. Have you ever in the past 12 months had a job or worked for an employment agency in addition

to your disability/unemplyment/welfare benefit without informing the Department of Social

Services?

3. Have you worked off the books in the past 12 months in addition to your disability/ unemploy-

ment/welfare benefit?

The remainder of the manuscript is structured as follows. In Section 2 we discuss the analysis of

RR data without explanatory variables. In Section 3 we discuss work on logistic regression adjusted

for RR data. In Section 4 we describe extensions to the situation of multivariate RR data. Section 5

discusses how regression approaches are to be adjusted in the light of new models that adjust for the

fact that part of the sample is not following the RR design laid out by the researcher.

2. Univariate and multivariate RR data, no explanatory variables

This section discusses the analysis of univariate and multivariate RR data, where no explanatory

variables are involved. We start off using the forced response design (Boruch, 1971) as an example of

an RR design.

Assume that the sensitive question asks for a yes or no answer. The forced response design is as

follows. After the sensitive question is asked, the respondent throws two dice and keeps the outcome

hidden from the interviewer. If the outcome is 2, 3 or 4, the respondent answers yes. If the outcome

is 5, 6, 7, 8, 9 or 10, the respondent answers according to the truth. If the outcome is 11 or 12, the

respondent answers no.

Let Y be the latent binary RR variable that denotes the true status on the sensitive item, and

let Y ∗ be the observed RR variable that denotes the observed answer on the randomized sensitive

question, with yes = 1 and no = 2. Then

P (Y ∗ = 1) = P (Y ∗ = 1|Y = 2)P (Y = 2) + P (Y ∗ = 1|Y = 1)P (Y = 1)

= 1/6 + 3/4P (Y = 1).(1)

If we write P (Y ∗ = 1) = c + dP (Y = 1), other designs can be described in the same way (compare

Böckenholt and van der Heijden, 2007).
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Following Chaudhuri and Mukerjee (1988) we simplify notation by using matrix notation. We

do this for the general situation that Y ∗ as well as Y have K categories, indexed by j, k; this will turn

out to be useful in the situation of multivariate RR data, i.e. the situation that more than one sensitive

question is asked using an RR design. We collect the probabilities P (Y ∗ = j) = πj referring to the

observed variable Y ∗ in a vector π∗π∗π∗ = (π∗1, ..., π
∗
K)t, and we collect the probabilities P (Y = k) = πk

referring to the latent variable Y in a vector πππ = (π1, ..., πK)t. We collect the randomizing probabilities

given by the RR design in a matrix PPP with elements pjk = P (Y ∗ = j|Y = k). Then the general form

of RR designs can be written as (Chaudhuri and Mukerjee, 1988; van den Hout and van der Heijden,

2002):

(2) π∗π∗π∗ = PπPπPπ,

As a first example, consider the forced response design. Here

(3) PPPFR =

(
p11 p12
p21 p22

)
=

(
11/12 2/12

1/12 10/12

)
.

As a second example, let there be two RR variables, leading to a first couple (Y ∗1 , Y1) with matrix P1P1P1 ,

and to a second couple (Y ∗2 , Y2) with matrix P2P2P2. Then the vector π∗π∗π∗ = (π∗11, π
∗
12, π

∗
21, π

∗
22)

t, the vector

πππ = (π11, π12, π21, π22)
t and PPP = P1P1P1⊗P2P2P2, where ⊗ is the Kronecker product.

The estimation of equation (2) is straightforward when the parameters are in the interior of the

parameter space. If we use sample proportions of yes and no answers as estimates of π̂ππ∗, then

(4) π̂ππ = P−1π̂∗P−1π̂∗P−1π̂∗

yields the unbiased moment estimates for πππ . If the parameters are in the interior of the parameter

space, then the unbiased moment estimates are equal to the maximum likelihood estimates (MLEs)

(compare van den Hout and van der Heijden, 2002).

Parameters are not necessarily in the interior of the parameter space. An example where they

are not in the interior of the parameter space can be derived from equation (1), when P (Y ∗ = 1) < 1/6.

In other words, the observed proportions are below chance level. If this happens, the moment estimate

for P (Y = 1) will be negative and the moment estimate for P (Y = 2) will be larger than one. As

MLEs cannot be negative, they will be found at the boundary of the parameter space (i.e. it is 0).

MLEs can always be found by maximizing the kernel of the multinomial loglikelihood. Let

nnn = (n1, ..., nK)t be the vector of observed frequencies related to the probabilities for the observed

response Y ∗ and let u be a unit vector of length K, then the kernel of the loglikehood is

(5) ` = uuut (nnn log π∗π∗π∗) = uuut (nnn log PπPπPπ) .

Maximizing ` over the parameters πππ can be done using an Expectation-Maximization algorithm, or by

maximizing the likelihood directly (compare van den Hout and van der Heijden, 2002). We note that,

when only one sensitive question is involved and the two moment estimates are outside the parameter

space, the two MLEs simply end up on the boundary as 0 and 1. When more than one sensitive

question is involved and one or more moment estimates are outside the parameter estimates, then, in

general, the MLEs cannot be derived analytically and L has to be maximized using iterative methods.

Example In the 2002 survey on regulatory non–compliance w.r.t. disability benefit the six RR

questions introduced in Section 1 were asked. The sample size was 1,760. Point estimates with 95

percent bootstrap confidence intervals are, for health item 1 it was .03 (.004 – .052), for health item

2 it was .04 (.012 – .061), for health item 3 it was .07 (.046 – .098) and for health item 4 it was .13

(.102 – .156). Note that the estimates go up for the later, less severe items. For work item 1 the point

estimate was .16 (.128 – .184) and for work item 2 it was .08 (.050 – .103).
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3. Logistic regression of univariate RR data

In logistic regression the dependent variable is predicted from one or more covariates. Let the

z covariates of individual i be collected in covariate vector xxxi of length z × 1, and let the regression

parameters be collected in a parameter vector βββ of length z × 1. Then one way to formulate logistic

regression is as

π1i =
exp(β0 + xxxtiβββ)

1 + exp(β0 + xxxtiβββ)
(6a)

π2i =
1

1 + exp(β0 + xxxtiβββ)
(6b)

(compare Agresti, 2002, for a general introduction to logistic regression).

Now assume that we deal with RR data, and let elements π1i and π2i refer to the probability of

the true status 1 and 2 for individual i, and let π∗1i and π∗2i refer to the probabilities of the responses

1 and 2 for individual i. If we collect the elements π1i and π2i into a vector πππi and elements π∗1i and

π∗2i into a vector πππ∗i , then

(7) πππ∗i = PπPπPπi

with πππi defined as in (6a) and (6b). Thus the probability of a sensitive true status of individual i is a

function of covariates xxxi.

The earliest reference to logistic regression for RR data that we came across was Maddela (1983,

pages 54-56), and an elaborate treatment can be found in Scheers and Dayton (1988) and van der

Heijden and van Gils (1996). Lensvelt-Mulders et al. (2006) extended the logistic regression procedure

so that it can incorporate person weights that make it possible to weight a sample toward population

characteristics, if known.

The logistic regression model for RR data is estimated by setting up the likelihood and max-

imizing over the parameters. Let the observed RR data for individual i be (n∗1i, n
∗
2i), with (n∗1i, n

∗
2i)

= (1,0) if individual i has answer 1, and (n∗1i, n
∗
2i) = (0,1) if individual i has answer 2. Then the

loglikelihood

`(β0,βββ) =
∑
i

(n∗1i log π∗1i + n∗2i log π∗2i) .(8)

For further model development it is useful to write this in matrix terms, similar as in (5). Let uuu be a

unit vector of length 2 × 1, and collect (n∗1i, n
∗
2i) in vector nnn∗i and of length 2 × 1 respectively. Then

equation (8) can be written as

`(β0,βββ) =
∑
i

uuut (nnn∗i log πππ∗i ) =
∑
i

uuut (nnn∗i log PπPπPπi) ,(9)

where the elements of πππi are defined in (6). Thus maximizing `(β0,βββ) over the parameters (β0,βββ) yields

the maximum likelihood estimates. The incorporation of person weights wi is simply accomplished by

reformulating the loglikelihood as

`(β0,βββ) =
∑
i

uuut (winnn
∗
i log PπPπPπi) .(10)

Maddala (1983) provides first and second order derivatives of the loglikelihood and suggests to

use the Newton-Raphson method to maximize the loglikelihood (see also Scheers and Dayton, 1988,
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and van der Heijden and van Gils, 1996). Van den Hout, van der Heijden and Gilchrist (2007) show

that the model is a member of the family of generalized linear models and propose to fit the model

with the iterative reweighted least-squares algorithm, which is a very stable fitting procedure.

Example. As an illustration we report an example taken from Lensvelt-Mulders et al. (2006).

The dependent variable is the work item ”In the last 12 months have you taken on a small job alone or

together with your friends that you got paid for without informing the social welfare agency?”. As an

explanatory variable we choose ”I think it is more beneficial to me not to follow the rules connected

to my disability insurance benefit”, abbreviated as ”benefit”, that is measured on a five–point scale

and has mean 3.67 and standard deviation .777. The logistic regression model logit(non-compliance)

= constant + b * benefit has estimates .765 for the constant and .751 for b. In order to study the

impact of these estimates, we compare the estimated probability of non-compliance for the mean value

of benefit (i.e. 3.67), and the mean plus or minus one standard deviation (i.e. 3.67 + .78 = 4.45 and

3.67 - .78 = 2.89). For the mean value of benefit the estimated probability of non–compliance is 12

percent, for 4.45 the estimated probability is 20 percent and for 2.89 the estimated probability is 7

percent. This shows that benefit has a strong relation with the decision not to comply with the above

disability insurance benefit regulation: the more people perceive their benefit if they do not comply,

the more they do not comply with this work regulation.

Further developments. Space limitations withhold us to discuss the following developments.

First, Frank et al. (2009) discusses the situation that repeated cross sections are carried out with the

aim to assess whether compliance with regulations has changed over time. They discuss this in the

specific situation that the randomized response design has changed over time. A second development

of interest is the development of a linear regression model where the RR variable is the independent

variable. See Van den Hout and Kooiman (2006) for details.

4. Extensions of regression approaches to multivariate RR data

Here multivariate RR data are analyzed directly using an appropriate regression model. As a

first example we discuss the analysis of a summary of the multivariate data, namely of a sum score

(see Cruyff, van den Hout and van der Heijden, 2008) . For example, if there is a set of M sensitive

questions indexed by m (m = 1, ...,M) it may be interesting to know how many sensitive questions

are answered affirmatively. This problem can be considered as the problem of estimating a sum score

variable Z from M RR variables Ym, where the sum ranges from 0,...,M . A second question is then

in what way this sum score can be related to explanatory variables. In this section we describe the

approach of Cruyff et al. (For a different approach, see Fox, 2008, who developed what a beta-binomial

ANOVA model for randomized response sum score data.)

Let the sum score variable denoting the number of true yes responses be defined by

Z =

M∑
m=1

Ym.(11)

Analogously, let the sum score variable Z∗ =
∑M

m=1 Y
∗
m denote the number of observed yes responses.

The probability of observing sum score s on variable Z∗, for s ∈ {0, . . . ,M}, is given by the RR sum

score model

π∗s =
M∑
t=0

qstπt,(12)

where π∗s = IP (Z∗ = s), πt = IP (Z = t) and qst = IP (Z∗ = s|Z = t). A general definition of the

elements qst can be found in Cruyff et al. (2008).
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The model is estimated as follows. Note that, similar to equation (2) we can write equation (11)

in matrix terms by collecting the elements qst in a matrix QQQ and it follows that

(13) π∗π∗π∗ = QπQπQπ.

Similar to equation (4), we can find a moment estimate of πππ by

(14) π̂ππ = Q−1π̂Q−1π̂Q−1π̂∗,

where πππ = (π0, . . . , πM )′,πππ∗ = (π∗0, . . . , π
∗
M )′ and π∗s estimated by n∗s/n, with n∗s denoting the frequency

of the observed sum score s on variable Z∗. The matrixQQQ is an (M+1)×(M+1) transition matrix with

entries (s + 1, t + 1) given by the conditional misclassification probabilities qst, for s, t ∈ {0, . . . ,M}.
The method of moment solution always fits the data, but can result in probability estimates outside

the boundaries of parameter space defined by (0, 1). The maximum likelihood estimates of the RR

sum score model are obtained by maximizing the kernel of the observed-data log likelihood

ln `(πππ|n∗0, . . . , n∗M ),=
M∑
s=0

n∗s ln

(
M∑
t=0

qs|tπt

)
,(15)

for πt ∈ (0, 1). Kuha and Skinner (1997) have provided EM algorithms. Van den Hout and van der

Heijden (2002) show that if the method of moments estimates are in the interior of the parameter

space, the maximum likelihood solution is identical to the method of moments solution. Otherwise,

one or more maximum likelihood estimates will be on the boundary.

We now present the model for the regression of an RR sum score variable on a set of covariates.

Assume that the sum scores are on an ordinal scale and let IP (Z = t|x) denote the probability that

the sum score variable Z takes on the value t given the covariate vector x. Define γt = IP (Z ≤ t|x).

Then the proportional odds model (McCullagh, 1980) states that

γt =
exp(αt − x′βββ)

1 + exp(αt − x′βββ)
,(16)

where the threshold parameters αt can be thought of as the values on a latent trait variable that mark

the transition from Z = t− 1 to Z = t. The threshold parameters satisfy the condition

(17) −∞ < α0 ≤ α1 ≤ . . . ≤ αM ≡ ∞.

Note that for M = 1, the order of the threshold parameters is −∞ < α0 ≤ α1 ≡ ∞, and expression

(16) reduces to the binary logistic regression model (with a negative sign for β).

In the RR design, Z is not directly observed. Therefore, the cumulative probabilities IP (Z ≤ t|x)

are modeled through the observed variable Z∗, with the relation between Z∗ and Z given by the RR

sum score model. The RR proportional odds model is given by

γ∗s =

s∑
j=0

M∑
t=0

qj|t(γt − γt−1),(18)

where γ∗s = IP (Z∗ ≤ s|x). For more details, see Cruyff et al. (2008). Example Cruyff et al. (2008)

report the following example concerning the following three sensitive questions discussed in the in-

troduction: ”At a Social Services check-up, have you ever acted as if you were sicker or less able to

work than you actually are?”, ”For periods of any length at all, do you ever feel stronger and healthier

and able to work more hours without informing the Department of Social Services of this change?”,

and ”Have you recently done any small jobs for or via friends or acquaintances, for instance in the

past year, or done any work for payments of any size without reporting it to the Department of So-

cial Services? (This only pertains to monetary payments.)”. They analyzed the sum score variable
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Table 1: Parameter estimates of the RR proportional odds model.

Parameters Estimates (se) t-value

α1 0.99 (0.31) 3.10

α2 2.46 (0.38) 6.46

Intercept -0.85 (0.46) -1.84

Gender -0.81 (0.26) -3.14

Education 0.32 (0.16) 2.05

Age -0.57 (0.28) -2.23

Time unemployed 0.13 (0.16) 0.80

Last job contract -0.57 (0.29) -1.99

Degree of disability -0.26 (0.25) -1.05

Z =
∑3

m=1 Ym, denoting the number of yes responses to these three questions of the Social Security

Survey, with the RR sum score model and the RR proportional odds model. The frequencies of the

sum scores 0, 1, 2, 3 observed in the sample are given by the vector n∗ = (811, 649, 245, 55).

The respective method of moments (MM) sum score probability estimates of the RR sum score

model are π̂ = (0.850, 0.075, 0.058, 0.017). Since the MM estimates are all in the interior of the

parameter space, the ML solution is identical. The log likelihood of ML solution is −1949.54. The

same probability estimates and log likelihood can also be obtained with the RR proportional odds

null model, i.e. the model without any covariates except the intercept. The parameter estimates of

the null model are β̂0 = −1.74, α̂1 = 0.77 and α̂2 = 2.32, and the sum score probabilities are found

by plugging these estimates into γ̂t defined in (16), and using expression π̂t = γ̂t − γ̂t−1.
Table 1 presents the parameter estimates of the RR proportional odds model with all six covari-

ates. The log likelihood of this model is −1937.84, yielding a likelihood ratio test statistic of 23.4 with

6 degrees of freedom in relation to the null model. The parameter estimates of the covariates gender,

age, last job contract and education are significant. Further developments The multivariate logistic

regression model proposed by Glonek and McCullagh (1995) is worked out by van den Hout, van der

Heijden and Gilchrist (2007). If there are, for example, two RR variables, the model by Glonek and

McCullagh may consist of two univariate logistic regressions as well as a regression model to predict

the odds ratio between the two responses. A second further development the so-called Rasch model,

which is a model that assumes, among others, a latent variable for the persons, and given the latent

variable the answers to the items are independent. For RR data this model was independently adapted

by Bockenholt and van der Heijden (2004, 2007) and Fox (2005). Here we just mention that the Rasch

model can be extended by relating the latent variable to explanatory variables. Bockenholt and van

der Heijden (2007) provide an example. Again, space constraints withhold us from discussing these

developments in detail.
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5. Discussion: implications of self protective responses for the analysis of univariate and

multivariate RR data

Despite the fact that the respondents’ privacy is protected by the RR design, it is not always

perceived as such by the respondents. Because RR forces respondents to give a potentially self-

incriminating answer for something they did not do, it is susceptible to self-protective responses (SP),

i.e. respondents answer no although they should have responded yes according to the randomizing

device (see for example, Edgell, Himmelfarb, and Duchan, 1982). The online questionnaires that

we used were designed in such a way that the outcome of the dice is not recorded and this was

mentioned in the instructions given to the respondents. As a result, the respondents were free to give

a different answer than the forced yes or no induced by the dice. Although RR performs relatively

well, by eliciting more admittances of fraud than direct-questioning or computer-assisted self-interviews

(Lensvelt-Mulders et al., 2005), non-compliance probabilities might still be underestimated if SP is

not taken into account.

Recently, several studies have focussed on the detection or estimation of SP in the setting of

RR. Clark & Desharnais (1998) showed that by splitting the sample into 2 groups and assigning each

group a different randomization probability, it is possible to detect the presence of SP responses and

to measure its extent. Böckenholt and van der Heijden (2007) use a multivariate approach to estimate

SP by proposing an item randomized-response model discussed shortly in Section 4. As an extension

of this model, the response behavior that does not follow the RR design is approached by introducing

mixture components in the IRR models with a first component consisting of respondents who answer

truthfully and follow an item response model, and a second component consisting of respondents who

systematically say no to every item in a subset of items. A similar approach is adopted by Cruyff et

al. (2007) who work out the same idea in the context of log linear models. A different approach for

sum scores (i.e. different from the approach taken in the proportional odds model discussed in section

5.2) is employed in Cruyff, Böckenholt, van den Hout and van der Heijden (2008) . They introduce

a regression model that allows for SP in randomized response sum score data. The model assumes

a Poisson distribution for the true sum score variable assessing the individual number of sensitive

characteristics. The model further assumes that the observed sum score variable denoting the number

of incriminating responses is partly generated by the randomized response design, and partly by SP.

Since SP by definition results in an observed sum score of zero, the distribution of the observed sum

score variable is zero-inflated with respect to the Poisson randomized response distribution of the true

sum score variable. The model allows for predictors that explain individual differences in the Poisson

parameters as well predictors that explain individual differences in the probability of SP.

It should be noted that it is not possible to estimate SP from univariate RR data, simply because

multivariate RR data are needed to estimate the probability of SP. If we want to the existence of SP

into account in the analysis of univariate RR data, we have to ”borrow” information from the SP-

parameters estimated in multivariate models. To solve this problem, Frank et al. (2008) propose to

employ a two-step approach. At the first step we estimate the amount of SP on each wave using

multivariate data consisting of three additional RR questions about health conditions, which are part

of the full data set. In a second step we use the estimates of SP as external information in our trend

analyses. Applying this approach, SP is estimated in the first step using the Profile Likelihood method

proposed by Cruyff et al. (2007). Given the estimates of SP for each wave, a correction for SP is

carried out by ignoring no responses from the sample. For example in 2002, 11% of the sample size is

reduced by ignoring observed no-responses. In the second step, change in time is modeled using the

frequencies adjusted for SP.

In a regression context where individuals have explanatory variables, similar results may be

obtained by weighting down those individuals that systematically say no. For example, when SP is
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estimated to be .10, then the sample size has to be reduced with 10 percent by giving respondents that

systematically say no lower person weight. For example, if the sample size is 1,000, then a reduction

has to be made of 100 respondents. If the number of respondents that systematically say no is 300,

then each of these respondents should get a person weight of .666 so that their effective number is

reduced to .666 * 300 = 200, which is a reduction with 100.
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