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ABSTRACT Geometric stratification is an absurdly simple way of stratifying skewed populations, taking

the boundaries in geometric progression. Implementation difficulties have recently been highlighted,

giving rise to unfeasible solutions, in particular with strata which are too small or even empty. In this

paper we suggest a modification, adding empirical rules for determining end points, outliers, take-none

and take-all strata in order to improve the efficiency and ensure a feasible set of boundaries.

1 Introduction

A stratified sample design partitions a population into H mutually exclusive groups called strata. The

population mean is

X =
1

N

H
∑

h=1

Nh
∑

i=1

Xhi,(1)

where Xhi is the ith unit in the hth stratum which contains Nh units (h = 1, 2, · · · ,H) units, and

N =
∑H

h=1 Nh is the total population size.

From each stratum a simple random sample of size nh ≤ Nh is drawn without replacement. The

total sample size is the sum n =
∑H

h=1 nh of the units selected from each stratum.

The mean of the sample selected from stratum h is

xh =
1

nh

nh
∑

i=1

xhi,(2)

where xhi is the ith unit selected from the hth stratum. The overall stratified sample mean is

xstrat =
H

∑

h=1

Whxh,(3)

where Wh = Nh/N is the weight of stratum h. It is easy to show (Cochran, 1977) that (3) is an

unbiased estimator of the population mean X, with variance

V (xstrat) =
H

∑

h=1

W 2
h

(

1 −
nh

Nh

)

S2
h

nh
.(4)

The objectives of stratification include choosing the sample sizes in each stratum (nh) and the bound-

aries (k1, k2 · · · , kH−1) to minimise (4). We denote the minimum value in the population by k0 and the

maximum as kH .

Neyman (1934) showed that for a given sample size n, (4) is minimised when the nh satisfy

nh =
nWhSh

∑H
i=1 WiSi

.(5)
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Dalenius (1950) showed that (4) is minimised when the stratum boundaries kh satisfy

S2
h + (kh − Xh)2

Sh
=

S2
h+1

+ (kh − Xh+1)
2

Sh+1

, 0 ≤ h ≤ H − 1,(6)

However, these equations are ill adapted to practical computations because Xh and Sh depend on kh.

To this day, they remain intractable, and the best that can be done is to obtain approximations to (6)

or iterative, computational algorithms to approach a solution which minimises the variance given in (4).

Gunning and Horgan (2004) developed geometric stratification, an extremely simple way of finding

boundaries for stratifying skewed populations which approximately minimise (4). They tested it on

real data and showed that it compared favourably in terms of efficiency and sample size to the cu-

mulative root frequency approximation of Dalenius and Hodges (1959), and to the Lavallée-Hidiroglou

iterative method (Lavallée and Hidiroglou, 1988).

Subsequent work has uncovered some problems which did not emerge during the original testing. Kozak

and Verma (2006) implemented the method on five positively skewed artificial populations and found

that with Neyman allocation in (5), sample sizes in some strata were too small to allow the calcula-

tion of the variance (nh < 2) or were greater than the stratum sizes (nh > Nh). Similar problems

arose in the work of Keskinturk and Er (2007) and of Brito, Maculan, Lila and Montenegro (2010).

Baillergeon and Rivest (2009) found that when populations contained very small X values, the geo-

metric method performed poorly. All researchers reported decreased efficiency in the geometric method.

The aim of this paper is to revisit geometric stratification, and develop a modification to restore the

level of efficiency observed in Gunning and Horgan (2004). After a brief overview of geometric strati-

fication in Section 2, we describe the proposed adjustments in Section 3, and compare the efficiencies

of the estimators obtained with the modified method with those of the Lavallée and Hidiroglou (1988)

optimisation algorithm. All the comparisons are implemented using the R package called Stratification

devised by Baillargeon and Rivest (2010). The final Section 4 summarises our developments.

2 Geometric Stratification

Geometric stratification (Gunning and Horgan, 2004) is based on an observation of Lavallée and

Hidiroglou (1988):

“for skewed populations, stratum coefficients of variation tend to be equalised with optimal

design.”

Some years previously Dalenius and Hodges (1959) hinted at the same conjecture:

“for many populations, and for reasonable locations of the stratum boundaries, the relative

variance does not vary much from stratum to stratum”

When we investigated the consequence of this assumption, we made a curious discovery: setting equal

the coefficients of variation in each stratum, i.e.

S1

X1

=
S2

X2

= . . . =
SH

XH
,(7)

produces boundaries that are in geometric progression (Horgan, 2006). We briefly outline the argument

which leads to geometric stratification.
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2.1 The Argument

Following Dalenius and Hodges (1959), we assume that X is approximately uniformly distributed in

each stratum, which implies that

Xh ≈
kh + kh−1

2
, 1 ≤ h ≤ H,(8)

and

Sh ≈
1√
12

(kh − kh−1), 1 ≤ h ≤ H.(9)

The coefficient of variation of stratum h is therefore

CVh =
Sh

Xh
≈

2(kh − kh−1)√
12(kh + kh−1)

.(10)

With approximately equal CVh it follows that

kh+1 − kh

kh+1 + kh
≈

kh − kh−1

kh + kh−1

,(11)

which reduces approximately to

k2
h = kh+1kh−1,(12)

which would mean that the stratum boundaries are the terms of a geometric progression,

kh = arh h = 0, 1, · · · ,H.(13)

Thus a = k0, the minimum value of the variable, and kH = arH , the maximum value of the variable,

so that the constant ratio r = (kH/k0)
1/H .

The somewhat artificial example given in Gunning and Horgan (2004) illustrates its simplicity:

A population ranging from 5-50,000 is to be divided into 4 strata.

H = 4 k0 = 5 k4 = 50, 000

Thus

r = (50, 000/5)1/4 = 10

and so kh = 5 · 10h which means the breaks are

5, 50, 500, 5, 000, 50, 000.

Geometric stratification does not involve iteration, overcomes the pain of optimisers, and is obtained

in one run through of the data file.

2.2 The Cochran-Horgan Data

Initial tests by Gunning and Horgan (2004) indicated that geometric stratification compared favourably

in terms of efficiency to the Lavallée-Hidiroglou iterative algorithm (LH) for obtaining optimum bound-

aries. They tested it on four real skewed populations:
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• Debtors: An accounting population of debtors in an Irish firm, detailed in Horgan (2003);

• UScities: The population in thousands of US cities from Cochran (1961);

• USColleges: The number of students in four-year US colleges from Cochran (1961);

• USbanks: The resources in millions of dollars of a large commercial bank in the US from Cochran

(1961),

The four populations are summarised in Table 1 and boxplots are provided in Figure 1.

Table 1: Summary Statistics for the Cochran-Horgan Populations

Population N Range Skew Mean SD

Debtors 3369 40-28,000 6.44 838.64 1873.99

UScities 1038 10-198 2.87 32.57 30.40

UScolleges 677 200-9,623 2.45 1563.00 1799.06

USbanks 357 70-977 2.07 225.62 190.46
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Figure 1: Cochran-Horgan Data

These data are now available in the stratification package of Baillargeon and Rivest (2010).

2.3 Efficiency Comparisons in the Cochran-Horgan Data

We implement the geometric and LH methods of stratification on these populations and compare them

in terms of their relative efficiency.

For a specified sample size, the relative efficiency is the ratio of the variance of the mean obtained

with LH and with geometric stratification. Conversely the relative efficiency can be defined as the

ratio of the sample size required with each design to obtain the same specified variance (V (xstrat) or

equivalently the coefficient of variation (CV = V (xstrat)/X).

Table 2 gives the efficiency of LH relative to the geometric with CV levels of 0.01, 0.015 and 0.02

and 4, 5, and 6 strata.
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Table 2: Efficiency of LH Algorithm relative to Geometric for Cochran-Horgan Data

Pop No. of Strata CV = 0.01 CV = 0.015 CV = 0.02

Debtors 4 0.76 0.81 0.87

5 0.70 0.77 0.83

6 0.75 0.79 0.83

USCities 4 0.84 0.94 0.99

5 0.99 0.82 0.97

6 0.87 0.89 0.99

USColleges 4 0.90 0.91 0.91

5 0.82 0.90 0.94

6 0.92 1.05 0.90

USbanks 4 0.81 0.95 1.05

5 0.98 0.99 0.98

6 0.98 1.20 1.31

Here we see that the efficiency is nearly always over 70% and in many cases in the high nineties. With

six strata in the US banks data, the efficiency is 1.2 and 1.31 with CV = 0.015 and 0.02 respectively,

indicating that LH needs 20% more sample values than the geometric to achieve CV = 0.015, and 31%

more to achieve CV = 0.02. It is likely in these cases that the LH reached a local rather than a global

minimum, one of the hazards of iterative procedures.

We used Kozak (2004) optimisation in the R stratification package to implement LH stratification;

this is the default in the stratification package.

3 Data with Outliers

One of the first critics of geometric stratification, Kozak and Verma (2006), showed that the geometric

method may not only lead to poor precision but also that some strata may be empty, and sample sizes

may be less than 2 or greater than the stratum sizes. Horgan (2010) pointed out that geometric strati-

fication uses just two values of the population to get the boundaries, the minimum and the maximum,

and, as the efficiency depends critically on these, things will go wrong if either the minimum k0 is too

small, giving too many small strata, or the maximum kH too large, dragging boundaries up.

Even in their original paper, Gunning and Horgan (2004) state:

“since the boundaries increase geometrically, it will not work with variables that have very

low starting points: this will lead to too many small strata”

Horgan (2010) cautioned that modifications of the geometric algorithm are necessary to address outliers

and small starting points, and suggested a take-all stratum in the case of large outliers, and a take-none

stratum when the starting points are very small.

To look at the problems that may arise with geometric stratification, we implement it on the skewed

data provided in Baillergeon and Rivest (2010)

Our first population is the size measure used for Canadian retailers from the Monthly Retail Trade

Survey (MRTS), consisting of 2,000 observations. In addition we use five of populations from the data

set SWEDEN, the 284 data points of Sweden Municipalities from Sarndal et al. (1992). These are:

5

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS058) p.3323



• P85: 1985 population in thousands;

• P75: 1975 population in thousands;

• RMT85: Revenues from the 1985 municipal taxation (in millions of kronor);

• ME84: Revenue of municipal employees in 1984;

• REV84: Real estate values according to 1984 assessment (in millions of knonor).

The other populations given in Baillargeon and Rivest (2010) turned out to be unsuitable for use with

our algorithm; some were not sufficiently skewed, others were essentially discrete and yet others con-

tained negative values.

The population used are summarised in Table 3 with boxplots provided in Figure 2

Table 3: Summary Statistics for data sets from MRTS and Sweden

Population N Range Skew Mean SD

MRTS 2000 141.2-486,400 8.62 16880 21574.88

P85 284 3-653 8.23 29.36 51.56

P75 284 4-671 8.47 28.81 52.87

RMT85 284 21-6720 8.79 245.10 51.56

ME84 284 173-47,070 8.78 30.88 4253.13

REV84 284 347-59,880 7.88 3088 4746.16
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Figure 2: MRTS and Sweden Data

The first thing to notice from Figure 2 is that, unlike the Cochran-Horgan data, all the populations

contain extremely large outliers.

3.1 The MRTS data

Initial applications of geometric stratification to the MRTS data yield inefficient results. Table 4 give

the efficiencies of the LH method compared to the geometric, for 4, 5 and 6 strata.
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Table 4: Efficiency of LH relative to the Geometric with MRTS

Pop No. of Strata CV = 0.01 CV = 0.015 CV = 0.02

MRTS 4 0.40 0.40 0.40

5 0.41 0.41 0.42

6 0.38 0.37 0.39

The efficiency levels observed in Table 4 are too low for serious consideration of the geometric method

as an alternative to the LH. The maximum relative efficiency is just 0.42 indicating that the LH method

will require a sample size of just 42% of that required by the geometric stratification to attain the same

precision.

On closer inspection, we found that there are three issues in this population that may have led to

the inefficiency; large outliers, small starting points and over-allocation. We look at each one sepa-

rately.

3.1.1 Large Outliers

Since the geometric method is critically dependent on the maximum value, we should exclude extreme

outliers before implementing geometric stratification. Figure 3 give two boxplots of the MRTS data.

The first one on the left is the whole population from which we can see that there are in fact five

outliers. The boxplot on the right in Figure 3 is the MRTS data with these outliers removed.
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Figure 3: Outliers in MRTS

Notice that when the five top values are removed the skewness of MRTS reduces from 8.6 to 3.8,

illustrating the huge influence five data points can have on the distribution. Large outliers are usually

put into a take-all stratum.

3.1.2 Small starting points.

It is not as easy to establish the influential small starting points as it is to establish the large outliers.

A possible approach is to examine the sample size necessary using Neyman allocation with the highest

likely number of strata (H = 6) and the highest likely coefficient of variation (CV = .02). In the MRTS

population H = 6 and CV = .02 will require n = 239 allocated with Neyman allocation yielding:
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Table 5: Sample Allocation with MRTS[1:1995]

Nh 9 70 533 1201 173 14

nh 1 1 19 139 65 14

As nh < 2 in each of the first two strata, we will take the starting point for geometric as the 80th value.

3.1.3 Over allocation

We also found that with Neyman allocation nh > Nh in some strata. Cochran (1977) points out that

this is not unusual, and explains that the problem arises when the sampling fraction n/N is substantial,

and some strata are much more variable that others. It occurs frequently in practice, and in skewed

populations usually in the top stratum, where SH can often be very large. The way to rectify the

problem is to set nh = Nh, and allocate the remaining sampling units optimally among the other

strata:

n∗h =
(n − NH)WhSh

∑H
i=1 WiSi

.(14)

provided that n∗h ≤ Nh. If it should happen that some n∗h > Nh, the allocation is changed to include

all of this stratum and reallocate the remaining elements optimally. This process is continued until

every n∗h ≤ Nh. The resultant allocation may be shown to be optimum for a given n (Cochran 1977).

3.2 Modified geometric stratification with MRTS data

The excluded extreme top values will be examined 100% (a take-all stratum), can be put into a take-all

stratum, and the excluded small values will not sampled at all (a take-none stratum). The population

to be stratified by geometric stratification are the values of MRTS in the interval [80 1995].

Table 6 gives the efficiency of LH compared to the geometric for CV levels 0.01, 0.15 and 0.02 with 4,

5 and 6 strata in the reduced population.

Table 6: Efficiency of LH relative to the Geometric in MRTS[80:1995].

Pop No. of Strata CV = 0.01 CV = 0.015 CV = 0.02

MRTS 4 0.72 0.87 0.76

5 0.73 0.80 0.81

6 0.73 0.75 0.75

We see from Table 6 that, although the efficiency is less than one in all cases indicating that LH is

more efficient than the geometric, the efficiency never drops below 0.7 and is sometimes 0.8 or more.

Comparing the efficiency levels obtained in the reduced population (Table 6) with those obtained in

the full population (Table 4), we see that the modification leads to substantial improvements in the

efficiency of geometric stratification.

3.3 Efficiency Comparisons with Sweden data

In the Sweden data set, there are three clear extreme outliers which will go into the take-all stratum,

and the take-none stratum are determined as shown above for the MRTS. The column on the left of
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Table 7 gives the efficiency of the LH relative to the geometric for each of the populations with strata

4, 5 and 6 and CV levels .01, .015 and .02, while the column on the right gives the correseponding

efficiencies for the reduced populations.

Table 7: Relative Efficiencies of LH relative to Geometric for Sweden Data

P85 P85[14:281]

No. of Strata CV = 0.01 CV = 0.015 CV = 0.02 CV = 0.01 CV = 0.015 CV = 0.02

4 0.62 0.63 0.66 0.74 0.78 0.84

5 0.57 0.59 0.57 0.76 0.91 1.05

6 0.64 0.75 0.66 0.79 0.94 0.87

P75 P75[1:281]

No. of Strata CV = 0.01 CV = 0.015 CV = 0.02 CV = 0.01 CV = 0.015 CV = 0.02

4 0.64 0.66 0.68 0.76 0.79 0.85

5 0.52 0.62 0.72 0.75 0.83 0.95

6 0.60 0.70 0.68 0.80 0.97 1.13

RMT85 RMT85[22:281]

No. of Strata CV = 0.01 CV = 0.015 CV = 0.02 CV = 0.01 CV = 0.015 CV = 0.02

4 0.64 0.67 0.71 0.74 0.78 0.85

5 0.59 0.61 0.57 0.79 0.92 1.04

6 0.66 0.67 0.67 0.71 0.83 0.94

ME84 ME84[26:281]

No. of Strata CV = 0.01 CV = 0.015 CV = 0.02 CV = 0.01 CV = 0.015 CV = 0.02

4 0.64 0.68 0.72 0.75 0.84 0.88

5 0.60 0.62 0.72 0.82 0.88 0.92

6 0.58 0.63 0.71 0.71 0.83 0.96

REV84 REV84[13:281]

No. of Strata CV = 0.01 CV = 0.015 CV = 0.02 CV = 0.01 CV = 0.015 CV = 0.02

4 0.66 0.70 0.69 0.80 0.92 0.88

5 0.64 0.62 0.64 0.79 0.89 0.93

6 0.63 0.67 0.61 0.84 0.98 0.91

We see from Table 7 that, in all cases, the modification has led to improved efficiency of the geometric

relative to the LH. Before modification, the efficiency of LH relative to the Geometric is less than 0.7

in most cases, and in the modified population, it is greater tha 0.7 in all cases. In many cases, the

relative efficiency is greater than 0.9, and is greater than one in three cases when CV = 0.02.

4 Discussion

Geometric stratification is an very simple procedure; just take the stratum boundaries in geometric

progression. There is no need for iteration and it can be implemented by hand. There is however a

catch; if outliers, either too small or too large, are included, the method could be too inefficient to be

of any practical value.

In this paper we have given empirical rules for determining outliers, take-all, and take-none strata

so that geometric stratification returns feasible solutions, and its efficiency is improved. What we have

shown is that geometric stratification is useful if we examine the population for irregularities before
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applying it, notably for extremely large and small values, which should be removed before applying the

geometric method. This is neither more nor less than what the practicing survey designer would do.

It is also what the auditor would do before carrying out an audit; find the extremely large values for

complete enumeration, and exclude the extremely small values. We have shown that simple boxplots

are an effective way of finding large outliers and an initial inspection of the smallest sampling fraction

to be used will cast light on the unacceptably small starting points.

Conceivably, instead of either geometric stratification, Lavallée-Hidiroglou, or other method, strati-

fication boundaries could simply be chosen entirely as a value judgement, by a practitioner with “a

good eye”. In a sense this primitive idea is what we need to salvage the geometric method: before

implementation first discard both large and small outliers. Indeed it is good practice to do this before

implementation of any stratification method. As the geometric method is based completely on the

minimum and maximum, it is more sensitive to outliers than any of the other procedures.
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