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1 Introduction 
The register-based employment statistics of Norway is a statistics disseminated annually by Statistics 
Norway. The employment variable measures whether or not a person is employed during the third 
week of November, and is constructed for each person in the target population by means of micro-
integration. During the micro-integration, several administrative registers are linked on micro-level 
and the information is harmonised before the integration ends in a classification of a person as 
employed or not employed. The micro-integration is described in Fosen (2010). 
 

We shall evaluate the accuracy of register-based employment statistics, REG-employment, for 
small areas such as municipalities, of which there are about 430 in Norway, and more than half of 
them   have less than 5000 inhabitants. We will compare the mean squared error (MSE) of REG-
employment, MSE-REG, and of LFS-employment, MSE-LFS. Our approach does not require linkage 
of the two data sources on the individual level. This can be useful in situations where such individual-
level linkages are either impossible, difficult, or prohibited by legal reasons.  

 
The main source of MSE for the REG-employment proportion is bias, and for simplicity we will 

assume no variance at all.  For LFS we will assume no non-sampling error such as e.g. nonresponse 
error. Then, the contribution to MSE of LFS-employment proportion comes only from variance, and 
only from bias in the case of REG-employment proportion. For short we will just write LFS-variance 
and REG-bias, being the LFS-MSE and square root of REG-MSE respectively.As opposed to the LFS-
variance, the REG-bias is not by nature a  function of the  sample size n . On national level, the 
squared REG-bias  is expected to behigher than the LFS-variance. However, if we consider smaller 
and smaller regions, the LFS-variance can be expected to eventually dominate over the REG-bias.   

 
In Section 2, we estimate LFS-MSE using a smoothing method. The estimation of MSE-REG is 

devoted to Section 3 where we will use small area modelling. In Section 4 we look at the results of the 
MSE comparison for the two models, using two different approaches. Finally in Section 5 we look at 
some properties of the bias estimators and suggest some improvements.    
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2 The estimated standard deviation of the LFS-proportion 

Let i  denote the municipality, and iY  the number of employed according to LFS in this sub 
population. We consider the simple sample average iy  as the LFS-employment proportion estimate. 

The standard deviation of  iy  is given by (1 ) /i i i in    , where the parameter i  is the true 

employment proportion. Due to small municipalities, the estimates i  have a large variation and then 

also the direct estimator ˆ ( ) (1 ) /i idir i isd y n   . Instead we use the generalised variance function 
GVF  
 -0.749 -1.030/2

GVF i
ˆsd ( ) niy e , (1) 

found by regressing  ˆlog sd ( )dir iy 
   onto  log( )in .  

3 Modelling the bias of the register-based statistics 
We can write  
  ,  1, 2,i i iy e i m   … , (2) 
where i i ie y   . We notice that Var( ) Var( )i i ie y   . Let iZ  be the number of employed 
according to REG in municipality i. We assume the model 
 ,  1, 2,i i iZ b i m   … , (3) 

where iZ is the employment proportion, ib  is the bias of iZ ,  and m is the number of municipalities in 

the data set. With i i iX Z y  we have, when combining (2) and (3),  

 i i iX b e  , (4) 
where i ie e  . We assume the bias to be a linear model  
 i ib v  , (5)  
of the underlying bias  and the random variable iv  representing the unexplained variation between 
the biases. When not otherwise specified we will by bias refer to ib .Putting (4) and (5) together we 
then have the linear mixed model 
 ,    (1, 1)T T

i i i i iX u v e u    … . (6) 

3.1 An alternative model 
For each person, we have register information about the register source for being classified as 
employed or not employed (Fosen 2010). Based on prior knowledge on the quality of different register 
sources, we divide the population into a high quality group 1, and a group 2 containing the rest of the 
population.  
 

We use subscript g  to denote group. Thus, giZ  and giY  are the number of REG-employed and 

LFS-employed in group g  in municipality i . The number of persons in this group is giN , and the 

proportion being REG-employed  and LFS-employed is giZ  and  giY .   
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For group 1 we have two special properties: firstly, it contains only persons being classified as 
employed, i.e. 1 1i iZ N  and thus 1 1iZ  . Secondly, we assume no bias in this group: the group 
contains only persons being employed according to LFS. Then we can estimate 1iY by  

 1 1
ˆ

i iY Z , (7) 

and further that model (6) for group 1 reduces to 1 1i iX e . 
 For group 2, we assume model (6), i.e.  

 2 2 2 2i i iX v e   . (8) 
We then have  

 1 2 1 2
2 1 2

i i i i
i i i i i i

i i i i

N N N NX Z Y Z Y Y
N N N N

      , (9) 

which simplifies into  

 1 1 2
1 2

i i i
i i i

i i i

N N NX Y X
N N N

   , (10) 

since 2 2 2i i iX Z Y  .  
 

We model 2iZ  in the same way as before and let 2 2 2i i iZ Y b  , where 2 2 2i ib v  , and 

2iv is a random effect at the municipality level. Using (7), an estimator of 2iY  is given by 

 2 1 2 1 2
ˆ ˆ( ) / ( ) /i i i i i i i iY Y Z N N y Z N    , (11) 

where iy is the LFS-employment level in the sample and î i iY N y . If we add and subtract 2iY , we get  

 2 1
2 2 2 2 2

2 2

ˆ ˆˆ i i i i i
i i i i i

i i

Y Y Z Y YY Y Y Y e
N N

  
      , (12) 

where 2ie  is the associated sampling error   2
ˆ /i i iY Y N , which is our best estimate since we are 

unable to identify the groups within  LFS.  The expected value of 2ie is zero and the variance is 
2

2( )( / )i i iV y N N .    
 

From (11) we now have  

 2 2 1 2 1 2 2 2

2

ˆ ˆ( ) / ( ) / ( ) / ( )( / )
( / )

i i i i i i i i i i i i i i i i

i i i

Z Y Z Z N Y Z N Z N y N Z y N N
x N N
        


, (13) 

where we notice that ix is the observed difference between the REG-employment proportion in the 
municipality population and the LFS-employment proportion in the sample.  
 

Similarly as for (4), we now write     

 2 2 2 2
ˆ

i i i iZ Y b e   , (14) 
which we insert into the left-hand side of (13). Then we have the following linear mixed model  

 2 2 2
2 2 2

i i i
i i i i i

i i i

N N Nx b e b
N N N

    , (15) 

where  

2 2( )iE b   and 2
2 2( )i vV b   

and  
 ( ) 0iE    and ( ) ( )i iV V y   
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Compared to the model of ix  earlier, the knowledge of 1 1 1i i iZ N Y   is incorporated as a shrinkage 
factor (i.e. always between 0 and 1) of the random effect 2ib . We assume the linear relation 

2 2 2i ib v  , similar to (5). Then we can write (15) as  
 2 2i i i i ix u c v    , (16) 
where 2 /i i i iu c N N   and 2 2i i i ib u c v  .   This linear mixed model is an alternative to (6).   

3.2 Fitting the multilevel model 

We assume iv  and ie  to be independent with expectation zero. In the case where the distribution of  

ie  is known, we have a special case of a basic Type A area level small area model of Rao (2003, 
Chapter 5), which can be written as  
 ( ) T

i i i i iX u c v e    . 
We identify our models (6) and  (16)  as special cases, with ( ) ( )I    . For the simpler model (6) we 
have 1i ic u  , whereas  2 /i i i ic u N N   under model (16). 
 

We assume the variance i  of  ie  known and given by (1). We want to estimate the bias  
 ivi i ib u c   (17) 
where iu   is the underlying bias and i ic v  is the unexplained variation between the areas.  The best 
linear unbiased prediction (BLUP) estimator for our model becomes (Rao 2003; Section 7.1.1)  

  ˆ ˆ1i i i i i ib X X u      , (18) 
where  

 
12 2 2

2 2 2 2 2 2
ˆ       and           v i i i i

i
i ii v i i v i i v i

c u X u
c c c

 
     


 

      
  . (19) 

The BLUP is a weighted average of the directly observed difference iX  and the model-induced bias 

iu  . The relative thrust i put in the direct observation equals the proportion of the variance being 

between-area variation 2 2
v ic .  For areas with few observations in , the sampling variance, i.e. the 

within-area variation i  is large, hence  i  is small and little thrust is put into iX .  By inserting the 

estimated variances ˆi  and 2ˆv  into (18), we  get the EBLUP estimator.  
 

The estimation of 2
v  is done using the iterative Fay-Herriot method suggested in Rao 

(2003;Section 7.1.2), where the ( 1)-tha   iteration is  

 
 

 
2( )

2( 1) 2( )
2( )'

a
va a

v v a
v

m p h

h


 




 
  , (20) 

where      2 12( ) 2 2ˆa
i i i v i

i
h X u c   


    and      2 22( ) 2 2 2ˆ' a

v i i i i v i
i

h c X u c   


    . 

Usually 10 iterations are sufficient for convergence of the algorithm.   
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4 Results 
When fitting the multilevel models (6) and (16) we use the data set of all municipalities where the LFS 
net sample size is at least two persons. 

4.1 Parameter estimates 

For model (6) we have 1i iu c  , and the parameter estimates become ˆ 0.00302   and 
ˆ =0.03825v . Since this model has no covariates, the underlying bias iu   of the bias (17) 

is ˆ 0.00302  .  
 

For the heterogeneity model (16) we have 2 /i i i iu c N N  . We use superscript H to 

distinguish from model (6), and get 2 0.00914H   and  2 0.09228H
v  . The estimated underlying 

bias 2 iu  of the bias (17) is averagely 0.0039 (and median 0.0038), thus 30 percent higher than the 
underlying bias above of model (6).   

4.2 Comparison of REG-employment and REG-employment using the distribution of 
the underlying bias estimator 

The small area model assumes that the underlying REG-bias iu  (as well as the single biases ib ) does 
not depend on sample size. However, the LFS-variance is decreasing with sample size. If we decrease 
the sample size, we expect at some point  that REG-employment outperforms LFS-employment in 
terms of MSE. For model (6) this is illustrated in the left hand panel of Figure 1, and represents one 
approach to MSE-comparisons. The estimated underlying REG-bias ˆ ˆ

iu    is positive and its 95 
percent confidence interval is also a 95 percent confidence interval of the square root of the REG-
MSE. On the other hand, the estimated LFS-employment standard deviation is the estimated square 
root of LFS-MSE. We see that when log sample size is less than 3.5, i.e. sample size less than 33, we 
can be 95 percent certain that REG-employment is better since MSE of LFS-employment is then 
higher than the 95% confidence interval of MSE of REG-employment. For larger sample sizes, we can 
not conclude one way or the other by this plot.  
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Figure 1.  Square root of MSE for LFS-employment (dashed line), upper 95% confidence 
interval for square root of MSE for REG-employment (dotted lines), and the estimated 
underlying REG-bias ˆ

iu   (solid line); lower confidence interval truncated to zero.  Model 
(6) in left panel and model (16) in right panel. 
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For model (16) we see in the right panel of Figure 1 that when log( ) 3.1in  , i.e. sample size up 

to 22 and municipality size roughly below 3500, we can conclude that REG-employment has a lower 
MSE than LFS-employment. For 3.1 log( ) 3.8in  , i.e. sample size between 22 and 44 
(municipality size roughly below 6500) we can draw this conclusion for some of the municipalities, 
whereas for larger sizes this way of comparison is inconclusive. For model (6) we remember that 
log( ) 3.5in   makes REG better, otherwise this comparison is inconclusive.  

4.3 Comparison of REG-employment and REG-employment using the EBLUP 
estimator  

We now compare  the individual municipality EBLUP estimates of REG-bias   against the LFS  GVF-
function. The left panel of Figure 2 shows that when we use the EBLUP estimator ib of model (6) for 
the REG-employment bias, the REG- MSE is smaller than LFS-MSE for almost all the municipalities. 
Similarly for the right panel for model (16).  
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Figure 2. The square root of MSE of REG-employment against that of LFS-employment.  
MSE of REG-employment based on EBLUP estimates. Left panel is model (6) and right 
panel is model (16).   
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5 Adjusting the EBLUP estimator 

 Under the assumed model, which in this section will be (6), the EBLUP estimator ib gives the best 
area specific estimates among all linear estimates, i.e. the best estimates for the municipalities when 
regarded one by one. According to the same model, the bias of REG-employment has expectation   
and variance 2

v . However, the EBLUPs in general do not possess this ensemble property, in which 
we often may be interested as in the comparison of MSE between REG and LFS in Figure 2. The 
EBLUP estimator (18) shrinks iX  towards the underlying common bias  , causing the empirical 

variance of ib  to be smaller than 2
v , for which reason the problem is known as overshrinkage.  

 
Assume that ),(~ Nbi . We can construct the overshrinkage-adjusted estimator *G

ib  by 

first sorting ib  into mib i …,1,~
)(  . Then we replace the i-th smallest )(

~
ib  of the  jb  by the 

m
i

-

quantile in the ˆ ˆ( , )vN   -distribution, giving a new set of predicted biases  *G
ib  having the desired 

distribution. Such a simultaneous approach has been considered by Zhang (2003). This algorithm 
limits the deviations *G

i ib b  from the best area-specific estimate, by keeping the order of the 
municipality-estimates before and after the adjustment.  

 
Since the ib  are over-shrunk towards the global expectation, the largest REG-MSEs are 

underestimated, i.e. in favour of the REG-employment in the comparison with LFS-MSE in such 
cases. After overshrinkage reduction, we see in Figure 3 that there are some more municipalities 
where LFS-MSE becomes smaller than REG-MSE, despite the overall conclusion remains. 
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Figure 3. The square root of MSE of REG-employment against that of LFS-employment, 
for municipalitites. REG-bias based on the Gaussian approach, with bias estimates *G

ib . 
Model (6) 
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Figure 4. The bias of REG-employment based on the EBLUP estimates. Model (6). 
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Figure 4 shows that the variation of  ib increases with the municipality sample size. However, 
we have no reason to believe that the true variation should depend on the sample size in this way. 
From (18) we see that i is an increasing function in the municipality sample size. Therefore, to make 

the variation of ib increase less rapidly, we may use a tranformed i , such as  1/ˆ ˆof
i i

  . By 

selecting 2  , we get an estimator of
ib whose empirical variance 2

ofb
S becomes almost identical to 

the estimated variance 2
v , hence also this approach results in an overshrinkage corrected estimator. 

A constrained empirical Bayesian (CEB) justification of this particular value 2   was given by 
Spjøtvoll and Thomsen (1987). We notice that ˆ of

i  is larger than ˆi  for all sample sizes, and greater 

emphasis is put on the direct estimator iX  compared to (18) for all municipalities.   
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Figure 5. Bias of REG-employment using EBLUP estimates ('1') and when using adjusted 
('2'). For the following methods:  Gaussian-based overshrinkage-adjusted *G

ib  (left panel), 
and constrained empirical Bayesian (CEB) overshrinkage-adjusted of

ib  (right panel). 
Model (6). 
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Figure 5 shows that ˆof

ib  is more uniformly distributed with regard to the municipality sample 

size (left panel), compared to *G
ib (right panel).  

 
We notice from the right panel of Figure 5 that ˆof

ib hardly adjusts the EBLUP estimator ib  for 

the 15-20 largest municipalities. This is in contrast to *G
ib which clearly adjusts ib  also for these 

municipalities, and even for the largest municipality Oslo. Intuitively, we would want the adjustment 
for Oslo and other larger municipalities to be limited since the best area specific estimates ib  are more 

precise for these municipalities. For Oslo,  ib  takes as much as 96 percent of its value from the direct 

estimator and only 4 percent from the common ̂ . The emphasis on the direct estimator is even 

stronger for ˆof
ib which for Oslo takes 99 percent of its value from the direct estimate. Figure 5 reveals 

that the overshrinkage adjustment method *G
ib has a drawback in that ib  is modified with no regard to 

the sample size of the municipalities. Meanwhile, in Figure 6 we see that the number of 
municipalities where REG-MSE exceeds LFS-MSE is approximately by the CEB overshrinkage 
adjustment method as by the approach underlying Figure 3.  
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Figure 6. The square root of MSE of REG-employment against that of LFS-employment, 
for municipalitites. REG-bias based on the CEB overshrinkage adjusted bias estimate ˆ of

i . 
Model (6). 

 

6 Conclusions 
We have described an approach for comparing register-based statistics with survey-based statistics that 
does not require linkage of the data across the sources on the individual level. Essentially, this comes 
down to the trade-off between the bias of the register data and the sampling variance of the survey 
data. Small area estimation techniques are used to estimate the bias of the register-based statistics. 
Adjustment for overshrinkage of the area-specific best estimates has been considered, which may 
affect the comparison. The methodology was illustrated using the Norwegian register-based 
employment and LFS data.  
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