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Introduction

Most of the geostatistical software tools, available either commercially in GIS and in statistical software

packages or as open source software (e.g. R, R Development Core Team, 2011) rely on non-robust

algorithms. This is unfortunate, because outlying observations are rather the rule than the exception,

in particular in environmental data sets. Outlying observations may results from errors (e.g. in data

transcription) or from local perturbations in the processes that are responsible for a given pattern

of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a

region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling

of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial

dependence of the residual variation and the predictions by kriging. Identifying outliers manually

is cumbersome and requires expertise. A better approach is to use robust algorithms that prevent

automatically that outlying observations have undue influence.

Former studies on robust geostatistics focused on robust estimation of the sample variogram

(cf. Lark, 2000, for a review), kriging without external drift (Hawkins and Cressie, 1984) and on

robust estimation of parameters of a linear model for the external drift (Militino and Ugarte, 1997).

Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum

likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later

used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a

novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly

contaminated by independent errors from a long-tailed distribution. Besides robust estimates of the

parameters of the external drift and of the variogram, the method also provides robustified kriging
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predictions.

Theory

We use the model Y (s) = x(s)Tβ+Z(s)+ε(s) where x(s)Tβ is the external drift, Z(s) is a stationary

Gaussian field with mean zero and covariance R(h;σ20, α), and ε(s) is an independently distributed

error with a probability density function proportional to 1/σ exp(−ρ(ε/σ)) so that ρ(x) = x2/2 gives

the case where ε(s) has a Gaussian distribution. σ2 is the squared scale parameter of ε and is commonly

called the nugget, and θT = (σ20, α) are the sill and range parameters of the covariance function (or

variogram). For some variogram models θ contains further parameters. Using the observations,

yT = (y(s1), y(s2), . . . , y(sn)) we want to estimate β, σ2 and θ and to predict Z(s) for some s where

s can be equal to one of the sampled locations si or different.

The starting point for developing our new procedure is the Gaussian log-likelihood

(1) l(β, σ2,θ|y) = −1

2
log
(

det(σ2I + Vθ))− 1

2
(y −Xβ

)T
(σ2I + Vθ)−1(y −Xβ)

that arises when ε(s) is Gaussian. Vθ = σ20Vα is the covariance and Vα the correlation matrix of

zT =
(
z(s1), z(s2), . . . , z(sn)

)
. We define the pseudo log-likelihood that depends in addition to the

parameters on the latent variable z

(2) l∗(β, σ2,θ, z|y) = −1

2
log
(

det(σ2I+Vθ)
)
− 1

2

n∑
i=1

(
y(si)− x(si)

Tβ − z(si)
σ

)2

− 1

2
zTV −1θ z.

The Gaussian log-likelihood may be considered as a profile log-likelihood of l∗(β, σ2,θ, z|y) that has

been maximized with respect to z. Hence, l(β, σ2,θ|y) = l∗(β, σ2,θ, z̆|y) where

z̆ = argmax
z

(
l∗(β, σ2,θ, z|y)

)
= Vθ(σ2I + Vθ)−1(y −Xβ).

Maximizing (1) with respect to β, σ2 and θ is thus equivalent to solving the expanded system of ML

estimating equations

∂l∗

∂z
=

1

σ̂

y −Xβ̂ − ẑ
σ̂

− V −1
θ̂
ẑ = 0,(3)

∂l∗

∂β
= XT y −Xβ̂ − ẑ

σ̂
= 0,(4)

∂l∗

∂σ2
= trace

(
(I +

1

σ̂2Vθ̂)−1
)
−

n∑
i=1

(
y(si)− x(si)

Tβ̂ − ẑ(si)
σ̂

)2

= 0,(5)

∂l∗

∂σ20
= n− trace

(
(I +

1

σ̂2Vθ̂)−1
)
− ẑTV −1

θ̂
ẑ = 0,(6)

∂l∗

∂α
= trace

(
(
σ̂2

σ̂20
I + Vα̂)−1

∂Vα
∂α

α=α̂

)
− 1

σ̂20
ẑTV −1α̂

∂Vα
∂α

α=α̂

V −1α̂ ẑ = 0.(7)

Closed-form expressions exist in general only for the generalized least squares (GLS) estimates of β

β̂ = (XT(σ̂2I + Vθ̂)−1X)−1XT(σ̂2I + Vθ̂)−1y,

and the plug-in mean square predictions of z

ẑ = Vθ̂(σ̂2I + Vθ̂)−1(y −Xβ̂),

which are called universal (UK) or external drift kriging predictions in geostatistics.
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Equations (3)–(7) show that the Gaussian ML estimates and the UK predictions depend on the

standardized residuals r̂/σ̂ = (y −Xβ̂ − ẑ)/σ̂, and it is obvious that both estimates and predictions

are sensitive to outliers in y. Welsh and Richardson (1997) proposed several approaches to make

ML estimates in linear mixed models robust to outlying observations. A first approach consists of

robustifying the Gaussian log-likelihood. One has then to replace (y(si)−x(si)
Tβ− z(si))2/σ2 in (2)

by a function ρc(·) of the standardized errors that grows more slowly than the quadratic (c denotes

here a tuning parameter that controls the amount of robustness of the estimates). Initially, we tried

such a strategy and approximated the restricted likelihood function (Harville, 1974) of a model with

long-tailed ε(s) by a Laplace approximation and maximized the approximation to get robust REML

estimates of the drift and variogram parameters (Schwierz et al., 2010). However, to bound the

influence of outliers, we had to use a bounded ρc(·) function, which made the numerical maximization

of the restricted log-likelihood more difficult because the related system of estimating equations has

then multiple roots. Furthermore, we had difficulties to find appropriate bias corrections to obtain

Fisher consistent estimates for Gaussian ε(s).

Therefore, we eventually pursued another suggestion by Welsh and Richardson (1997) and ro-

bustified (3)–(7) by replacing r̂/σ̂ by a bounded and odd function ψc(·) of the standardized residuals,

yielding thereby a system of robustified estimating equations

1

σ̃
ψc
(y −Xβ̃ − z̃

σ̃

)
− V −1

θ̃
z̃ + a1 = 0,(8)

XT ψc
(y −Xβ̃ − z̃

σ̃

)
+ a2 = 0,(9)

trace
(
(I +

1

σ̃2Vθ̃)−1
)
−

n∑
i=1

ψ2
c

(y(si)− x(si)
Tβ̃ − z̃(si)

σ̃

)
+ a3 = 0,(10)

n− trace
(
(I +

1

σ̃2Vθ̃)−1
)
− z̃TV −1

θ̃
z̃ + a4 = 0,(11)

trace
(
(
σ̃2

σ̃20
I + Vα̃)−1

∂Vα
∂α

α=α̃

)
− 1

σ̃20
z̃TV −1α̃

∂Vα
∂α

α=α̃

V −1α̃ z̃ + a5 = 0.(12)

In the above equations, a1 to a5 are adjustments for Fisher consistency at the Gaussian model.

They are determined by the condition that the expectations of (8)–(12) must vanish for Gaussian ε(s)

(e.g. Maronna et al., 2006, p. 67). Hence, a1 = a2 = 0 since ψc(·) is odd, and

a3 = a∗3 − trace
(
(I +

1

σ̃2Vθ̃)−1
)

(13)

a4 = a∗4 −
(
n− trace

(
(I +

1

σ̃2Vθ̃)−1
))
,(14)

a5 = a∗5 − trace
(
(
σ̃2

σ̃20
I + Vα̃)−1

∂Vα
∂α

α=α̃

)
,(15)

where (using (8) to derive (16))

a∗3 =
n∑
i=1

E [ψ2
c

(y(si)− x(si)
Tβ̃ − z̃(si)

σ̃

)
] = σ̃2 trace

(
V −2
θ̃

E [z̃, z̃T]
)
,(16)

a∗4 = E [z̃TV −1
θ̃
z̃] = trace

(
V −1
θ̃

E [z̃, z̃T]
)
,(17)

a∗5 = E [
1

σ̃20
z̃TV −1α̃

∂Vα
∂α

α=α̃

V −1α̃ z̃] =
1

σ̃20
trace

(
V −1α̃

∂Vα
∂α

α=α̃

V −1α̃ E [z̃, z̃T]
)
.(18)

To correct the biases we thus need the covariance matrix of z̃, which we approximated in the following

way: The starting point was a first-order Taylor series approximation for ψc(r̃/σ) at ε/σ

ψc(r̃/σ) ≈ ψc(ε/σ)− 1

σ
diag

(
ψ′c(ε/σ)

)(
z̃ − z +X(β̃ − β)

)
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where r̃T = y−Xβ̃− z̃ and εT = (ε(s1), ε(s2), . . . , ε(sn)). Then we replaced ψ′c(ε(si)/σ) by its expec-

tation, say b = E [ψ′c(ε(si)/σ)] (for Gaussian ε(s)), and substituted the modified Taylor approximation

in (8)–(9) for ψc(r̃/σ, which resulted in[
z̃

β̃ − β

]
≈M −1

[
I I

XT XT

][
b z

σψ(ε/σ)

]

where

M =

[
b I + σ2V −1θ bX

bXT bXTX

]
.

Since z and ψc(ε/σ) are independent, and letting a = E [ψ2
c (ε(s)/σ)] (for Gaussian ε(s)), we finally

obtained the approximation

(19)

[
Cov [z̃, z̃T] Cov [z̃, β̃

T
]

Cov [β̃, z̃T] Cov [β̃, β̃
T

]

]
≈M −1

[
Λ ΛX

XTΛ XTΛX

]
M −1,

where Λ = b2Vθ + a σ2I.

Solving (8)–(12) subject to (13)–(15) and (19) for the non-robust case yields the customary

REML estimates of σ2 and θ and the related plug-in GLS estimate of β and the UK prediction of

z. Hence, apart from the Bayesian interpretation of the REML estimates (Harville, 1974) and the

interpretation as ML estimates obtained from error contrasts (Patterson and Thompson, 1971), the

REML estimates can also be considered as ML estimates, forced to be Fisher consistent for finite

sample size.

Estimation procedure

We wrote an R function that solves the robustified estimating equations for z̃, β̃, σ̃2 and θ̃. Instead of

the popular Huber ψc-function (Maronna et al., 2006, p. 26), we used the continuously differentiable

function

(20) ψc(x) =
2c

1 + exp(−2x/c)
− c,

which corresponds to a shifted and scaled logistic cumulative distribution function. Note that

lim
x→±∞

ψc(x) = ±c. We computed the roots of the estimating equations by a combination of itera-

tively re-weighted least squares (IRWLS, e.g. Maronna et al., 2006, p. 105) and a Broyden’s scheme.

For given σ̃2 and θ̃, z̃ and β̃ were determined by IRWLS. The estimates were then inserted into

(10)–(12), and the roots of these equations were computed by Broyden’s method as implemented in

the R package nleqslv.

The estimation procedure needs initial values for z and all the parameters. An initial guess of

β̃ was obtained by MM-estimation (Maronna et al., 2006, pp. 124). The robust regression residuals

were then spatially smoothed by loess to get an initial z̃. The MAD of the loess residuals was taken

as initial σ̃. An initial guess of θ̃ was obtained by fitting the sill and range parameters of a parametric

variogram model (with nugget fixed at the initial σ̃2) by weighted non-linear least squares (Cressie,

1993, p. 96) to the sample variogram of the regression residuals that had been computed by the MAD

estimator (Dowd, 1984).
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Table 1: Statistics of relative errors (%) of the approximations of a∗3, a
∗
4 and a∗5 in simulations of n =

50–500 Y (s) (s uniformly distributed on the unit square) for tuning parameter c = 1. The data were

generated with a linear external drift in the coordinates and an exponential variogram with ranges

varying from 0.01 to 0.2 and nugget:sill ratios from 0.25 to 4.

minimum 1st quartile median 3rd quartile maximum

a∗3 −11.5 −7.6 −4.5 −2.7 −0.9

a∗4 −10.7 −6.6 −3.8 −2.3 −0.9

a∗5 −17.7 −9.1 −4.8 −2.5 5.2

Simulation study

We explored the properties of our robust REML estimation method by simulations. First, we checked

approximation (19) for Cov [z̃, z̃T]. We simulated for several external drifts and exponential or cu-

bic variograms (with various combinations of nugget, sill and range) data sets consisting of 50–500

Gaussian Y (s) on grids or for uniformly distributed s in one- and two-dimensional domains.

For each scenario, we simulated 5 000 realizations and computed for each realization a∗3, a
∗
4 and

a∗5 using (19) and the true σ2 and θ. Then we compared the mean of these 5 000 a∗i values with the

“true” value that was computed with the empirical covariances of the 5 000 estimates z̃, obtained by
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Figure 1: Boxplots of estimates β̃, σ̃2 and θ̃ computed from 200 Gaussian data sets that were

simulated with a linear external drift in the coordinates and an exponential variogram with σ2 = 0.5,

σ20 = 2, and α = 0.05 for n = 200 uniformly distributed s in the unit square (dotted lines mark true

parameter values, for c = 1000 estimates correspond to customary REML estimates).
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Figure 2: Standardized sensitivity curves for one realization of the simulation scenario 500 Gaus-

sian Y (s) on centred regular grid in [0, 1]; no trend (β = −0.5); exponential variogram with

σ2 = 0.5, σ20 = 2, α = 0.05. The observation at s = 0.895 was contaminated by adding

x ∈ (−20, 19.75,−19.5, . . . , 19.75, 20). Then we estimated for each x the model parameters and z,

and plotted n(φ̃(x) − φ̃(0)) vs x, where φ denotes a parameter or an element of z. Estimates and

predictions correspond for c = 1000 to customary REML estimates and UK predictions.

solving (8)–(9) with the true covariance parameters. Table 1 lists as example the relative errors of the

approximations for the simulations with the spatially uniformly distributed s on the unit square. On

average, the approximation underestimated the a∗i , but, except for the very short ranges, the modulus

of the relative errors rarely exceeded 10 %. Errors in the approximations of a∗3 to a∗5 lead to some bias

in the parameter estimates. Figure 1 shows boxplots of the estimates β̃, σ̃2 and θ̃ for a simulation

scenario where the approximation resulted for c = 1 in relatively large errors (a∗3: -10.4 %, a∗4: -8.3 %,

a∗5 -13.0 %). The medians of the variance estimates deviate with decreasing c increasingly from the

true values, but compared to the biases that we faced when maximizing the robustified log-likelihood

these systematic errors seem tolerable.

Second, we computed for a single realization of one simulation scenario sensitivity curves

(Maronna et al., 2006, p. 55). Figure 2 shows that the sensitivity curves remained bounded for

c ≤ 2, both for the parameter estimates and the predictions. As expected from theory, the sensitiv-

ity decreased with decreasing c. In contrast, the non-robust estimates (c = 1000) got increasingly

corrupted by increasing the severity of the outlier.

Third, we simulated 200 realizations of a contaminated Gaussian field where 5 % of the ε(s)

had been replaced by normal variates with ten times as large standard deviation. The boxplots of

the estimates are shown in Figure 3. The contamination strongly inflated the non-robust (c = 1000)
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Figure 3: Boxplots of estimates β̃, σ̃2 and θ̃ computed from 200 contaminated Gaussian data

sets (500 Y (s) on centred regular grid in [0, 1]; no trend (β = −0.5); exponential variogram with

σ2 = 0.5, σ20 = 2, α = 0.05; 5 % of ε(s) randomly replaced by normal variates with mean zero and

standard deviation 7.9) (dotted lines mark true parameter values, for c = 1000 estimates correspond

to customary REML estimates).

REML estimate of the nugget, biased (negatively) the REML estimate of θ and increased the variances

of the estimates of all three covariance parameters. The robust estimates of θ showed no systematic

errors and σ̃2 was much less biased and more efficient than the REML estimate. The systematic error

in σ̃2 decreased with decreasing c.

Summary and conclusions

We developed a novel robust REML method to estimate the external drift and the variogram param-

eters of Gaussian spatial data that are possibly contaminated by outliers. The methods also provides

robustified universal kriging predictions. Simulations showed that our procedure bounds the influence

of outliers on parameter estimates and predictions, and yields approximately Fisher consistent esti-

mates at the Gaussian model. For large c, the estimates and predictions coincide with the customary

REML estimates and the plug-in UK predictions.

So far, we did not yet check whether (19) provides an accurate approximation of Cov [β̃, β̃
T

] and

Cov [(z̃− z), (z̃− z)T]. These quantities are required for computing the mean square prediction error

at non-sampled s. Furthermore, we have to develop robust procedures for testing hypotheses about β.

Some of these further developments will be presented at the conference, along with an analysis of data

on heavy metals in the soils around a metal smelter in Switzerland where removal and displacement

of contaminated soil has led to unpredictable irregularities in the spatial distribution of the metals.
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