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Abstract 

The recent economic crisis has altered the dynamics of economic series and, as a 

consequence, introduced uncertainty in seasonal adjustment of recent years. This problem 

was discussed in recent workshops at the European Central Bank and at Eurostat in the 

context of adjustment of the Euro Area Industrial Production (EPI) series. 

Because a seasonal component is unobserved and undefined, it is difficult to 

compare results from different adjustment methods. Within the regARIMA model-based 

approach, however, a framework for systematic analysis is indeed present. The EPI series is 

analyzed under the TRAMO-SEATS framework. The purpose of the analysis is not to 

compare alternative methods, but to show how the results of the model-based analysis can 

be exploited at the identification, diagnostics, and inference stages of modeling.  

Despite the uncertainty induced by the crisis (and the revisions to the unadjusted 

data), the automatic procedure, with ramps to capture the spectacular 2008 drop in the 

series, provides excellent and stable results. 
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1 Introduction 

The economic crisis of the last three years has had an impact on the behavior of economic 

series, and models and methods used by statisticians and economists have had a difficult 

time dealing with it. The European Statistical System (ESS) Guidelines for Seasonal 

Adjustment (Eurostat, 2009), aimed at harmonizing and providing guidelines for seasonal 

adjustment within the ESS, was completed as the crisis unfolded. The Guidelines did not 

specifically deal with crisis like the present one, and seasonal adjusters have felt disoriented. 

In July 2010, a workshop was held at the European Central Bank (ECB) on implementation of 

the Guidelines and on ways to treat the crisis; Fifteen central banks and twenty statistical 

offices were present. One of the sessions centered on seasonal adjustment of the Euro Area 

Industrial Production (EIP) series and this paper expands on the comment we contributed. 

One point under discussion was the behavior of the monthly seasonally adjusted (SA) 

EIP series in recent periods. The official adjustment carried out by Eurostat for the period 

January 1990-March 2010 (243 observations) is displayed in Figure 1. Because the economic 

recession has introduced significant uncertainties, some ECB statisticians conducted 

alternative test calculations which led them to suspect that official SA monthly rates of growth 

for the past few months were too high (Eiglsperger and Haine, 2010). Figure 2 compares the 

SA monthly rates of Eurostat with those of the Eiglsperger and Haine (EH) procedure for the 

last years of the period considered. The slope of the recovery in the last months of the sample 

is clearly higher for the Eurostat SA series. 

While Eurostat uses the TRAMO-SEATS (TS) method in the DEMETRA interface, EH 

tests were performed with X12ARIMA (X12A). TS and X12A are widely used procedures and 

are the two methods considered in the ESS Guidelines. The programs and documentation 

can be downloaded from the US Bureau of the Census and Bank of Spain web sites 

(www.census.gov/srd/www/x12a, and 

www.bde.es/webbde/en/secciones/servicio/software/econom.html, respectively). An 

overview of the two methodologies can be found in Findley et al. (1998), Gómez and Maravall 

(2001a, b) and Findley (2005).  

 Both methods consist of two steps. First, the series is pre-adjusted; second, it is 

seasonally adjusted. The preadjustment step determines a possible transformation of the 

data, and identifies (often automatically) a regression(reg)-ARIMA model. This model is used 

to extend the series with forecasts, to identify and estimate outliers, calendar and other 

effects captured through regression variables. In the second step, a filter is applied to the 

extended series -net of outliers and regression effects- to obtain estimators of the (stochastic) 

SA series, as well as of the seasonal, trend-cycle, and irregular components. Combining them 

with the outliers and regression effects, the final estimators of the components are obtained. 

 

 

 

 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS030) p.2692



 

BANCO DE ESPAÑA 10 DOCUMENTO DE TRABAJO N.º 11XX 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The official SA series and the alternative proposal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Rates of growth of the SA series. 
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The previous general structure is common to both methods. The similarities in the 

pre-adjustment step are many (e.g., the "automdl" option of X12A is based on the automatic 

model identification procedure in TRAMO). The adjustment step, on the contrary, follows 

different methodologies. The filter of X12A is selected from a set of a priori designed filters 

(X11 in essence). SEATS follows the so-called ARIMA-model-based (AMB) approach (see 

Burman, 1980, Hillmer and Tiao, 1982, and Bell and Hillmer, 1984). The filter in SEATS yields 

the minimum-mean-squared-error (MMSE) estimator of a theoretically specified component. 

This filter is often referred to as the Wiener-Kolmogorov (WK) filter. The component model is 

derived from the ARIMA model identified and fitted to the observed series. The two 

approaches represent different philosophies and this has repercussions in terms of analysis, 

diagnostics, and interpretation of results. Due to the continuity in the X11-X12A family, 50 

years of use have made users familiar with its output. This is not quite the case for TS and for 

how its output can be used to evaluate seasonal adjustment. 

Because a seasonal component is never observed and no universal definition is 

available, it is difficult to compare results from different adjustment methods in a systematic 

manner. Within the model-based approach, however, a framework for systematic analysis is 

indeed present. In this paper, the EPI series is analyzed under the TS model-based 

framework. No comparison of different methods is made; our aim is to show how the results 

can be exploited at the identification, diagnostics, and inference stages of modeling. 

For the rest of the paper, unless otherwise specified, model-based diagnostics and 

inference are derived and computed under the assumption that the model is correct. The 

results should be interpreted thus as a “best case” approximation in which model parameters 

are “known”. (Some improvements that take into account parameter estimation error are 

presented in Blakely and McElroy, 2011 and Bell, 2005.) 
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2 The series and the “alternative” procedure 

The seasonal adjustment method suggested by EH is X12A with the following specifications: 

log transformation, two level shift outliers (Nov 2008 and Jan 2009), no correction for calendar 

effects, and (0,1,1) (0,1,1)₁₂ ARIMA model orders (i.e., those of an Airline model). As shown in 

Figure 3a, the seasonal factors obtained are reasonably stable and, as seen in the first row of 

Table 1, the residuals pass the Behra-Jacque test for Normality. 

 

Table 1: Model diagnostics. 

 
Residual 

SE in 10⁻² 
Residual diagnostics OS 

Forecast 

RMSE (in 

10-2)  Q N Sk K Q2 Runs QS 

EH 1.31 54.3 1.5 -0.8 -0.9 46.6 0.9 0.0 1.8 

TS-0 1.28 20.0 2.3 -0.9 1.2 42.7 2.4 0.2 1.7 

TS-2LS 1.21 29.1 2.1 -1.0 1.0 36.6 2.2 0.0 1.6 

TS-2R 1.11 27.6 1.0 0.6 -0.8 15.2 1.6 0.3 0.9 

Approx. 95% 

Critical Value 
--- 32 6 2 2 37 2 6 --- 

 

SE: Standard Error; Q: Box-Ljung test for 24 autocorrelation; N: Behra-Jarque 

Normality test; Sk: t-test for skewness; K: t-test for Kurtosis; Q2: McLeod and Li squared 

residuals test for nonlinearity; Runs: t-test for randomness in signs; QS: Pierce test for 

Seasonality; RMSE (OS Forecast): Out-of-Sample 1-period-ahead forecast root mean square 

error (last 12 observations).    

But the output of X12A flags some problems: (a) the residuals are autocorrelated; (b) 

the in-sample forecast errors are large; (c) a peak at the TD frequency is detected in the 

spectra of the residuals, differenced log SA series, and irregular component; (d) the 

autocorrelation function (ACF) of the squared residuals indicates some nonlinearity. Direct 

inspection of Figure 4a shows, for the last two years, an accumulation of large negative 

residuals followed by a sequence of mostly positive ones. This abnormal behavior coincides 

with the crisis period.  
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Figure 3: Seasonal Factors. 
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Figure 4: RegARIMA model residuals. 
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To understand the model choice, X12A was run automatically with the automdl 

option and all pretests included. The series is modeled in levels, five outliers are detected (one 

is the LS Nov 2008 outlier), significant calendar effects are found, and the identified ARIMA is 

a (1,1,2) (0,1,1)₁₂ model. The EH regARIMA model and the one automatically detected by 

X12A are considerably different, and the automatic result provides a better fit. The residuals 

show no evidence of autocorrelation and all Normality tests, as well as the Q2 test on the 

squared residuals, are comfortably passed. However, a few problems remain: the in-sample 

forecast errors are still large, a peak in the residual spectrum is found at the TD frequency, 

and the M4 X12A statistics signals too much autocorrelation in the irregular component. The 

problems, however, do not seem major. The forecast problem is mostly associated with the 

recent crisis; the TD peak is moderate; and the M4 statistics is of little interest (MMSE 

estimators of a white noise irregular in an ARIMA series ought to be autocorrelated; see 

Maravall, 1987). 

The EH choice of logs versus levels seems acceptable: the ratio of the two 

likelihoods (appropriately adjusted) is extremely close to 1, thus the pre-test cannot 

discriminate between the two transformations; besides, logs improve normality. As for TD and 

Easter effects, the EIP series is obtained from aggregation of country series supposed to have 

already been adjusted for calendar effects. Indirect TD adjustment is thus taken for granted, 

although it does not correct the series properly. Still, compared to the seasonal component, 

calendar effects are of secondary importance. Concerning the ARIMA model, possibly the 

Airline model was motivated because it is simple and robust. Given that in X12A the model is 

only used for preadjustment and 1-year forecast extension of the series, it is thought that the 

effect of model misspecification on the seasonal factors is likely to be small and, ultimately, 

seasonal factors are all that matter. Yet, in the absence of a definition (or model), how do we 

know how the seasonal component should be? 

In justifying their model, EH stressed that seasonality should be stable and 

uncontaminated by the economic crisis. Considering that more stable seasonal components 

will likely imply more unstable SA series, in so far as one of the main uses of SA series is to 

help cyclical assessment, forcing seasonal stability would not help. Further, to assume that a 

profound crisis does not affect seasonality of industrial production seems unrealistic. Thus the 

priority given to seasonal stability has fuzzy grounds. Some series will have more moving 

seasonality than others and the seasonal component should adapt accordingly. In TS this 

adaptation is achieved through the width of the spectral peaks at seasonal frequencies in the 

model for the seasonal component and by the size of its innovation. (The dilemma “stability 

versus optimality” is discussed in Maravall, 1998.) 

In summary, the EH proposal presents problems. (Both the EH and Eurostat 

procedures have been improved after the Workshop and are now closer.) The automatic run 

suggests that the problems could be properly dealt with working with X12A. We will not 

pursue this issue and will look instead at the approach of TS. The aim will not be to find the 

best possible model, but to show how one can proceed within the model-based framework, 

and how quality of the seasonal adjustment can be addressed. (The analysis will also use 

results of a new version of TS not yet released. Some of them, such as the phase delay 

function and the autoregressive spectrum used in Section 5, have benefited from the X12A 

developers help.) 

Although the X12A and TS filters represent different methodologies, it has often been 

pointed out that, for many series, they yield similar results. Running TS with the EH 
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specifications, as seen in Figure 5, the difference between the X12A and TS SA series is 

negligible even for the crisis years. Thus the EH SA series can be approximately seen as the 

MMSE estimator of the SA series implied by the fitted Airline model, and the output of TS 

could provide inference such as, for example, the SE of the X12A SA series (interpreted as a 

model-based estimator) and of its rates of growth or forecasts. In our case, however, the 

presence of autocorrelation in the ARIMA residuals would invalidate the model and the 

inference. (Be that as it may, given that the X11 filter is not model based, model-based 

inferences need not be relevant.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: X12A and TS-0 SA series: Airline (EH) model. 
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3 TRAMO-SEATS automatic (model-based) procedure 

3.1 Summary of the procedure 

Instead of DEMETRA, we use program TSW, (a Windows version of TS, also available at the 

Bank of Spain website) and start with the automatic option that pretests for a 6 parameter TD 

variable. This option estimates a general model of the type 

���� � 	
�  
���� �����
��

���
�	��  �������

��

���
� ����,                                  �1� 

where � denotes the lag operator, ����� is a dummy variable that indicates the 

position of the i-th outlier, and 
���� is a polynomial in � reflecting the type of outlier. For an 

additive outlier (AO), 
���� � 1; for a transitory change (TC), 
���� � 1 �1 � 0.7 ��⁄ , and for a 

levels shift (LS), 
���� � 1 �1 � ��⁄ . “Cal” denotes a calendar effect variable, such as TD or 

Easter effect, �� is its associated coefficient, and ���� is an invertible ARIMA model, say 

"��� ���� � #��� ���� ,             "��� � $��� %���,                                  �2� 
where ���� is a zero-mean white-noise innovation with variance '�(���, and 

$���, #��� and %��� are finite polynomials in �, the last one containing the unit AR roots. 

Thus, 

%��� � )*  )+*, ,             )� 1 � B, ).� 1 � B. � ) S,                                     �3� 
where S � 1 � � �1� �+2�, s denotes the number of observations per year, and 

� � 0, 1, 2, 3, and �+ � 0, 1 are the possible choices for the difference orders. (The procedure 

allows for missing observations in ����.) In TS, after testing for a log transformation, possible 

outliers and calendar effects, as well as the ARIMA model for ����, are automatically 

identified. The resulting model is estimated by exact maximum likelihood. 

When used for seasonal adjustment, first, removal of the regression effects from 

����, yields an estimate of the stochastic component ����. In what follows it is assumed that 

the stochastic component is equal to this estimate, which is then split into an uncorrelated 

stochastic seasonal component - 4���- and a stochastic SA series - 5���- as in 

���� � 4��� � 5��� .                                                                 �4� 
First, the roots of $��� and %��� are assigned to the seasonal component or to the 

SA series. This yields the factorizations $��� � $+���  $���� ; %��� � %+���  %���� , where 

the subindex indicates the allocation of roots to the components. For example, when �+ � 1, 

(3) implies  %+��� � 7, and %���� � )*8� . 

Letting "+��� � $+��� %+��� , and "���� � $���� %���� , a partial fraction expansion 

eventually yields the decomposition 

#���
"���  ���� �

#+���"+��� �+��� �
#����"���� ����� ,                                         �5� 
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where �+ and �� are the (uncorrelated) innovations in the seasonal component and 

SA series. The partial fractions decomposition is done in the frequency domain: the pseudo-

spectrum of ���� is partitioned into additive spectra associated with the terms in the r.h.s. of 

(5). Identification of a unique decomposition is achieved by imposing the canonical condition 

that the minimum of the seasonal component pseudo-spectrum be zero (see Burman, 1980).  

The WK filter for estimating 4��� is given by the ratio of the 4��� and ���� pseudo-

spectra, and yields the MMSE estimator –also the conditional mean- of 4��� given ����. The 

filter is centered, symmetric, and convergent; its derivation requires an infinite realization of 

���� in the direction of the past and of the future. To apply the filter to a finite realization, 

model (2) is used to extend ���� with forecasts and backcasts and, the full effect of the infinite 

filter can be captured with a moderate number of them. As new observations become 

available, forecasts will be updated and eventually replaced by observations. As a 

consequence, the estimator of 4��� near the end of the series is preliminary and will be 

revised. For long enough series, the filter for periods in the central years will have converged 

and the estimator will be final (or “historical”). This estimator can be assumed to have been 

obtained with the complete WK filter applied to the observed series.  

The duration of the revision process of a preliminary estimator depends on the 

ARIMA model identified for the series. (For EIP case the revision of a concurrent estimator is 

completed in 2 years, and hence historical estimators can be assumed for the central 16 

years.) 

Spectral factorization provides the time-domain expression of the components 

models, say 

"+��� 4��� � #+���  �+��� ,                                                     �6�� 
"���� 5��� � #����  ����� .                                                   �6;� 

Letting < denote the forward shift operator (i.e., < � �2�) and replacing the ratio of 

pseudo-spectra by the ratio of autocovariance generating functions (ACGF), the time domain 

expression of the WK filter becomes (after simplification) 

ν.�B, F�  � k.   θ.�B�  θ.�F�  φB�B�  φB�F�θ�B�  θ�F�   ,                        �7� 

where C+ � '�( ��+� '�( ���⁄ , so that the final estimator is given by 

sD�t� � ν.�B, F�  x�t� ,                                                             �8� 
where H+��, <� is the ACGF of the stationary ARMA model 

θ�B� zJ � θ.�B� φB�B� b�t� ,          Var �b� � k. .                               �9� 
From (2), (7), and (8), sD�t� can be expressed in terms of the innovations in x�t�, 

φ.�B�  θ�F�  sD�t� � k.  θ.�B�  θ.�F� φB�F� a�t� ,                                �10� 
so that the ACGFs and spectra of 4��� and sD�t� will be different. In particular, if 5��� 

is non-stationary, the model for sD�t� will be noninvertible, displaying spectral zeros associated 
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with the unit roots in φ����. (Changing the subscript 4 for 5 in (7) and (8), the previous 

derivation yields H���, <� and 5D���.) 
When the series ���� is split into more components (as in: trend-cycle + seasonal + 

stochastic TD + irregular component) the procedure is a straightforward extension, with all 

components made canonical. 

 

3.2 The application 

The automatic TS procedure yields the SA series of Figure 6. The regARIMA model obtained 

selects the logs, finds significant calendar effects, and identifies the �3,1,0� �0,1,1�₁₂ ARIMA 

model  

�1 � 0.04 � � 0.20 �P � 0.35 �Q� )  )�P x�t� � �1 � 0.41 ��P� a�t� 
with '�(��� � 0.013P. We shall refer to this model as the "TS-0 model". (In previous 

versions of TS that had lower critical values for outlier detection, a moderate LS was detected 

for May 2008.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: EH and TS-0 SA series (with confidence interval for the latter). 

 

The difference between the result of the automatic modeling of X12A and TS is 

perhaps puzzling because the automdl procedure of X12A is based on TRAMO. When 

adapting the code to X12A, modifications were made in the default sequence of estimation 

algorithms, in the critical value for outlier detection, in the main information criterion for model 

comparison, in some model restrictions, etc. (see Monsell, 2009). These modifications may 
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induce differences in results. In our example, these differences are: (a) TS selects logs, X12A 

levels. As mentioned before, the likelihood ratio is very close to 1, so that trivial differences 

might tip the coin; (b) TS detects no outlier, X12A detects 5, mostly due to the fact that the 

use of levels tends to increase the number of outliers detected (when logs are imposed, the 

automatic X12A procedure detects no outlier); (c) X12A selects a �1,1,2� �0,1,1�₁₂ model, 

while TS chooses a �3,1,0� �0,1,1�₁₂ one. Thus the stationary regular part of the model for 

X12A has an ARMA(1,2) structure, with a real AR root (0.75) and a pair of complex conjugates 

MA roots; the AR(3) model of TRAMO factors into a real root (0.80) and a pair of complex 

conjugate ones. Figure 7 compares the pseudo-spectra for the two models. The most 

relevant difference is a small amount of variance centered between the fourth and fifth 

harmonic, near the TD frequency, associated with the complex roots of the AR(3) polynomial 

in TS-0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Pseudo-spectra of automatically identified models. 
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4 Calendar effects 

4.1 Stochastic trading day 

There is evidence that calendar effects are still present in the aggregate of the working day 

adjusted series provided by the individual countries. Given that the quality of calendar 

adjustment varies considerably across countries, the result may be understandable. More 

intriguing is that, after the automatic run of X12A has removed the calendar effects remaining 

in the indirectly adjusted series, the spectrum of the residuals still presents a peak for the TD 

frequency. This is not the case with TS. The pair of complex conjugate roots in the AR(3) 

polynomial have frequency = 2.22 radians, not far from 2.19 (or 4.2 cycles per year), which is 

the main frequency used in the TS and X12A spectral TD checks (frequency will always be 

expressed in radians.) These roots may suggest a stochastic TD effect not removed by the 

deterministic specification.  

TS models this effect as a stationary ARMA(2,2), where the AR contains the roots 

close to the TD frequency, and the MA(2) is obtained from the model decomposition. 

Because of the canonical condition, the MA(2) will have two real roots (at the 0 and π 

frequencies) and the first one will be a unit root (i.e., a spectral zero). For the EIP series, the 

stochastic TD effect, c(t), follows the stationary model 

�1 � 0.84B � 0.47BP� c�t� � �1 � B� �1 � 0.58B� aS�t� ,                    (11) 

with aS�t� white noise with '�(�aS� � 0.0018P. Its spectrum is shown in Figure 8. 

Figures 9 and 10 compare the deterministic and stochastic TD component estimators: 

broadly, both look noisy, specially the stochastic trading day component. 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Spectra of the Stochastic Trading Day component model and of its   

theoretical estimator. 
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Figure 9: Deterministic trading day effect. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Stochastic trading day effect. 
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Our TD adjustment consists, first, of the removal of a deterministic TD through 

regression and, second, when the resulting series still exhibits a spectral peak at the TD 

frequency, removal of this peak through MMSE estimation of an ARMA(2,2) component. 

Purely stochastic TD components, whereby random walk models on the TD regression 

coefficients are specified have been used by Harvey (1989) and Bell (2004). In our approach, 

the stochastic TD is captured with a single stochastic component plus the deterministic TD 

effects, while in the random walk approach the mean of each TD coefficient evolves over time 

subject to the constraint that, at any point in time, the seven stochastic TD coefficients sum to 

zero. 

 

4.2 A comment on trading-day spectral diagnostics 

Spectral peaks in the residuals or in the SA series are useful diagnostic tools for TD effects. 

However, TD detection by looking at the spectrum of the unadjusted series is trickier: 

because of the proximity between the main TD frequency and the 4th seasonal harmonic, the 

TD effect may well pass unnoticed. In TS, a stochastic TD can also be detected through the 

presence of a pair of AR roots associated with the main TD frequency. This complex root will 

typically be stationary and an ambiguity emerges.  

First, the frequency of the AR roots is not the same as the frequency of the spectral 

peak they induce (Jenkins and Watts, 1968). Consider, for example, an AR(2) model with 

polynomial �1 � T₁B � T₂B²� that contains a pair of complex conjugate roots.  

The frequency of the root is  

λV � arccos |T₁|/2√T₂  , 
while the maximum of the model spectrum is achieved at the frequency  

λ. � arccos [�T��1 � TP�/4TP\ . 
The two frequencies are different and the difference (λV � λ.) depends only on the 

modulus of the root, or equivalently, on TP. As the root approaches non-stationarity, the 

difference goes to zero. This "frequency displacement" effect is aggravated because, when 

c�t� follows the stationary model (11) and its estimator cD�t� follows a model similar to (10) (with 

4 replaced by �), it is easily checked that the frequencies of the spectral peaks in c�t� and cD�t� 
are not the same. 

As a consequence, for a stationary stochastic TD, there are three relevant 

frequencies. One is the frequency of the AR root, λV, that will also be driving the “eventual” 

ACF and forecast function (i.e., the ACF and forecast function for lags and horizon beyond the 

model MA order). The others are the frequencies associated with the spectral peaks of the 

model for the component, λ., and of the model for its MMSE estimator, λ]..  
In the model-based approach, the three frequencies can be derived from the ARIMA 

model for the series. For the EIP series and the stochastic TD component given by (11), it is 

found that λV � 2.22, λ. � 2.23, and λ]. � 2.29. As seen in Figure 8, these frequencies are 

slightly above the TD frequency used in the spectral diagnostics. Thus, if a fixed frequency is 
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used in the checks, the associated interval (in SEATS at present, 2.15 – 2.30) should allow for 

the previous distortions.  

The discussion applies in an identical way to stationary seasonal components, but 

given that highly stationary seasonal components are unlikely, it will seldom be relevant. 
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5 Some frequency domain results 

Model TS-0 contains 11 parameters; their estimators however have small correlations, never 

exceeding 0.17 (in absolute value). As seen in Table 1, the TS-0 model improves upon the EH 

model in that no residual autocorrelation is detected. Still, the Run test for randomness in the 

residual's signs flags a problem, evidenced by direct inspection of Figure 4b. The last 12 

residuals are positive, which seems unacceptable and implies underestimation of the series 

for the last months. 

From the point of view of seasonal adjustment, a consequence of not having 

introduced LS outliers to capture the spectacular plunge at the turn of the year 2008 is a 

more moving estimate of seasonality. As shown in Figures 3a and 3b, the increased variability 

is nevertheless moderate.  

Spectra of the differenced SA series (in logs) are displayed in Figures 11a and 11b. 

The first one is a parametric AR(30) spectra, similar to the one in X12A. The second one is a 

non-parametric Tukey spectrum. The AR spectrum is appropriate for detecting peaks at the 

seasonal and TD frequencies (see Childers, 1976). The Tukey spectrum, on the other hand, is 

more informative in what concerns spectral minima. In the AMB approach, the r.h.s. of the 

equation for the historical estimator of the SA series (i.e., equation (10) exchanging s and n) 

contains the polynomial "+�<�. Hence non-stationary seasonal components induce zeros for 

seasonal frequencies in the spectrum of the SA historical estimator. Given that seasonal 

ARIMA models typically contain a seasonal differencing, all seasonal frequencies will present 

that feature.  

For preliminary estimators, the spectral minima (at the seasonal frequencies) are 

close to (but not quite) zero. Thus the spectrum of an estimated SA series that includes 

preliminary estimators at both ends will be close to (though not strictly) non-invertible. Given 

that AR models are always invertible, the spectral minima will be poorly captured (and pushed 

away from zero, Maravall, 1995). The spectral dips (or near-zeros) at the seasonal frequencies 

are likely to be better captured with the Tukey spectrum. The EH SA series shows a slight 

distortion in the frequency of the local minimum near some seasonal frequencies (e.g., 3rd 

and 5th harmonics in the AR(30) spectrum) and the two spectra show that more variance has 

been removed at the seasonal frequencies with the TS-0 model, in accordance with its more 

moving seasonal. Accordingly, as Figure 6 showed, the EH SA series is more erratic.  

Using the AMB SEATS decomposition of the EH model (as Figure 5 shows, very 

close to the X12A one), Figure 12 plots the finite-filter phase delay functions (adapted from 

the one provided to us by the X12A developers) of the EH and TS-0 concurrent estimators of 

the SA series. Although, as shown in Findley and Martin (2006), smoother SA series tend to 

imply larger phase delays, in our case the opposite result is obtained. Within the range of 

frequencies of cyclical interest, the TS-0 estimator induces a smaller phase delay, that 

extends from a few days (long-term cycles) to half-a-month (2-year cycle). 
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a) Non-parametric Tukey (log) spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

b) AR (log) spectrum. 

 

Figure 11: Spectrum of SA series (differenced and mean corrected). 
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Figure 12: Phase delay of finite SA concurrent filter (in months). 
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6 Seasonal adjustment errors and revisions 

It is difficult to assess the significance of the difference between two SA figures without having 

information on their estimation errors. TS provides SE of the SA series for the semi-infinite 

filter realization. (McElroy, 2008a, presents a matrix extension for the finite filter case; Bell, 

2005, considers the effect of adding sampling and parameter estimation errors.) The SA 

series estimation error is the sum of two types of orthogonal errors. One is the error in the 

historical estimator, that typically characterizes the central years of the period considered. For 

months at both ends of the series, preliminary estimators will suffer revisions as they converge 

to the historical estimator. The difference between the preliminary and historical estimator is 

the revision error.  

Let ���� follow model (2), and consider the decomposition of x�t� as in (4). Assume 

s�t� and n�t� follow the models (6a) and (6b). The error in the historical estimator, s�t� � sD�t�, 
has the ACGF of the model 

θ�B�z�t� � θB�B�θ.�B�b�t�,                                (12) 

with '�(�;� � '�(���� '�(��+�/'�(���; see Pierce (1979). As for the revision error, 

let s�t|t � k� denote the estimator of s�t� when x�t � k� is the last available observation. 

(When k _ 0, s�t|t � k� yields a forecast.) Model (10) can be expressed as the partial 

fractions decomposition 

sD�t� � C+   θ.�B�θ.�F�φB�F�φ.�B�θ�F�  a�t� � `M�B�φ.�B� � FN�F�θ�F�c a�t� 

(see Maravall, 1994, and Bell and Martin, 2004). The series expansion of the fraction 

in F is convergent; the one in B is not. Thus sD�t� can be expressed as 

sD�t� � ψe�B�a�t� � ψf�F�a�t � 1� ,                                 (13) 

where ψe�B� contains the effect of the starting conditions and of the innovations up 

to period �, and ψf�B� � g�<�/#�<� is a convergent filter of innovations posterior to �. 
Because the expectation at time � of a�t � k� when C h 0 is zero, the concurrent estimator is 

sD�t|t� � ψe�B�a�t�, and its associated revision is r�t|t� � sD�t� sD�t|t� � ψf�F� a�t � 1�. 
Therefore, r�t|t� follows the model 

θ�F�r�t|t� � N�F�a�t � 1�,                                              (14) 

from which its variance and autocorrelations can be computed.  

The derivation extends easily to any preliminary estimator, including forecasts. In 

particular, and taking conditional expectations at times �� and �P ��P h �� i �� in (13), the 

revision in the preliminary estimator sD�t|t�� caused by the new observations x�t� �
1�,… , x�tP�, is an MA(tP � t�) process (Pierce, 1980). (Finite sample extensions are considered 

in McElroy and Gagnon, 2008, and a model-based diagnostic based on them is developed in 

McElroy and Wildi, 2010.)  
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The ACGF of the total estimation error is the sum of the ACGFs of the historical and 

revision errors. All three ACGFs correspond to stationary ARMA models with the AR 

polynomial equal to θ�B�. From the models, inferences can be drawn having to do with the 

precision of the estimators and their rates of growth. Further, some general properties can be 

derived: For example, under the standardization '�(��� � 1, when the model for x�t� 
contains the seasonal difference �1 � B¹²�, if θ�B� contains the factor �1 � θ₁₂B¹²� with θ₁₂ 
close to -1, the model will present a stable seasonal component that will require small 

revision. But due to the close-to-unit root in θ�B�, these revisions will be slow to converge to 

zero. On the contrary, when θ�P k 0, the revision will tend to be large but converge fast.  

For the TS-0 model, it is found that the concurrent estimator of the SA series follows 

the model 

�1 � 0.78�� )P nD�t|t� � 0.72 �1 � 0.53B � 0.58BP � 0.02BQ� a�t� ,            (15) 

where the MA(3) polynomial has three real roots (0.92, 0.57, and 0.03). The model is 

close to (though not quite) non-invertible. The revision this estimator will suffer follows the 

model 

�1 � 0.41<�P� r�t|t� � 0.37 θV�F� a�t � 1� , 
with θV�F� a polynomial of degree 16, with three real roots (0.92, 0.55, and 0.14) and 

five pairs of complex conjugate roots. The SD of the total estimation error of the concurrent 

SA series estimator is equal to 0.69 percent points (p.p.) and a 95% confidence interval for its 

month-to-month rate of growth is given by (l1.16 p.p.). Given that the historical estimation 

error is never observed, of more practical interest is the error with respect to the best 

measure that can eventually be achieved, i.e., the revision error. For the concurrent estimator, 

the SD of the revision is 0.60 p.p.; after one year 78% of its variance has been removed, and 

the concurrent estimator has practically converged to the historical estimator in two years. 

The revision error is relatively large, but converges to zero reasonably fast. 

Figure 6 plots the 95% confidence interval of the TS-0 estimator of the SA series. 

The months with a significant disagreement between the EH and TS-0 estimators are 

numerous, more noticeably since the year 2007. The two adjustments seem “significantly 

different”. 
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7 Distribution of MMSE estimators 

The M4 diagnostic, failed by the automatic option of X12A in Section 2, serves to illustrate 

model-based translation of an X12A quality assessment statistics. The M4 statistics indicates 

too much autocorrelation in the estimator of the irregular component. Not knowing what the 

proper autocorrelation should be, the diagnostics indicates that an estimator with 

autocorrelation beyond a certain amount would indicate poor quality. A similar diagnostic can 

be made in the model-based framework, but a more complete analysis of the irregular is now 

possible. 

In general, TS decomposes x�t� into the sum of orthogonal components all of which 

follow ARIMA-type models. Denoting by u�t� the irregular component and by s�t� the sum of 

all other components, the decomposition can be expressed as  

x�t� � s�t� � u�t�, 
and a derivation similar to the one in Section 3.1 shows that the final estimator of 

u�t� can be expressed as 

θ�F�uD�t� � knφ�F�a�t�,     (16) 

with kn � Var�u� Var�a�⁄  and the ACF of uD�t� is that of the "inverse" model of (2) (Bell 

and Hillmer, 1984). For close to non-invertible models the autocorrelations can be remarkably 

high, although they will not be associated with trend or seasonal frequencies due to the 

spectral zeros induced by the unit roots in φ�F�. 
SEATS estimates u�t� as the residual after all other components have been 

removed. Let this estimator be uo�t�. If the model is correct, the sample variance and ACF of 

uo�t� should be in agreement with the theoretical ones implied by (16), and this agreement can 

be assessed by means of the SE of the estimated autocorrelations. In this way simple tests 

are obtained, that are, in essence, misspecification tests (see Maravall, 1987, 2003). 

The comparison between theoretical and empirical second-order moments of the 

estimator extends to other components. Thus, for example, using TS to decompose the EH 

model it is obtained that the variance of the stationary transformation of the estimated trend-

cycle is 0.016, with SE � 0.003, while according to (10) –with s standing now for the trend- it 

should be 0.026. This discrepancy may indicate underestimation of the trend-cycle 

component. Findley, McElroy, and Wills, 2004, and McElroy, 2008b, show that the SEATS 

test –based on final estimators- are biased towards underestimation, and provide a finite 

sample improvement (not incorporated to SEATS yet).  

For the TS-0 case, Table 2 compares the sample variance and autocorrelations of 

the irregular component estimator with those implied by model (16), together with the 

associated SE. No discrepancy is found. 
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Table 2: Irregular component: Autocorrelations and Variance. 

 
Autocorrelation Model for Estimator Sample Estimate SE 

Lag-1 -0.35 -0.36 0.07 
Lag-2 -0.08 -0.06 0.09 
Lag-3 -0.23 -0.24 0.07 
Lag-4 0.17 0.10 0.07 

Variance 0.008 0.007 0.001 

 

As already mentioned, the frequency domain expression of the WK filter that 

provides the final estimator of 4��� is the ratio of the pseudo-spectrum of 4��� to that of ����. 
Letting qr�s� denote a pseudo-spectrum, it follows from (8) that 

fBu�λ� � vfB�λ�fw�λ�x
P
 fw�λ� � yfB�λ�fw�λ�z  fB�λ� { fB�λ�  , 

f.D�λ� � yf.�λ�fw�λ�z  f.�λ� { f.�λ�  . 

The difference fw�λ� � [fBu�λ� � f.D�λ�\  �h 0� is the cross-spectrum or, in the time 

domain, the cross-covariance function. Thus, although the components are assumed 

uncorrelated, MMSE yields correlated estimators. For the two component decomposition of 

(4), the crosscovariance generating function between sD�t� and nD�t� is the ACGF of the 

stationary ARMA model given by (12).  

An implication is that the error in the historical estimator of n�t� (and of s�t�) is equal 

to the lag-0 crosscovariance between nD�t� and sD�t�. (Thus, in the absence of explicit models 

for the series and components, the sample lag-0 crosscovariance could provide a rough 

estimate of the SA series historical estimation error variance. For the EIP case, the theoretical 

value of the lag-0 crosscovariance is 0.0034 while the sample estimate is 0.0040.) 

The appearance of crosscovariances between the estimators of components 

assumed uncorrelated has often been signaled as an inconvenience of the standard 

unobserved components MMSE model-based approach. (Although the result would apply in 

general to any components estimated as linear functions of the same observations). In the TS 

approach, given that the crosscovariances between component´s estimators are always finite, 

when at least one of the components is non-stationary the corresponding crosscorrelations 

would tend to zero and hence their sample estimates will be small. If d+ds > 1 – a condition 

satisfied by the vast majority of series that are seasonally adjusted – the convergence to zero 

will also be true for the crosscorrelations between the components rates of growth. Thus, in 

practice, the inconvenience will likely be of little relevance.     

Given that typically the SA series and seasonal component are non-stationary, cross-

correlations have to be computed for their stationary transformations. Proceeding as with the 

autocorrelations, the theoretical crosscorrelations between the component estimators should 

be close to their sample estimates. Table 3 exhibits the lag-0 theoretical and sample 

crosscorrelation for the TS-0 procedure. Except for the stochastic TD-irregular case, 

correlations are small and the comparison shows no anomalies. The relatively high correlation 

between the stochastic TD and irregular component may cause instability in the detection of 

the former. 
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Table 3: Crosscorrelation between stationary transformation of estimators. 

    Model for Estimator Sample Estimate SE 

Trend-cycle/Seasonal -0.09 -0.15 0.05 

Seasonal/Irregular 0.06 0.06 0.02 

Trend-cycle/Irregular -0.17 -0.16 0.03 

Seasonal/Stoch. TD 0.07 0.08 0.01 

Trend-cycle/ Stoch. TD 0.05 0.05 0.01 

Stoch. TD/Irregular 0.79 0.78 0.02 

 

 

Remark: The role of the moving average polynomial in the observed series model  

In the model-based approach, while the models for the series and the components 

are models in B (i.e., the past explains the present), those of the revision error and irregular 

estimator are models in F (the future explains the present). As expressions (12), (14), and (16) 

indicate, the historical estimation error, the revision, and the irregular component estimator 

(the residual of the decomposition) are stationary and autocorrelated (although their forecast 

will always be 0). In the three cases, the ACF is that of an ARMA model with AR polynomial 

equal to #���, the MA polynomial of the original series model.  

The autocorrelation functions of the “errors” will have different starting conditions, as 

a result of the different MA parts of models (12), (14), and (16), after which they will follow the 

same difference equation. Therefore, a slow converging revision error, for example, will be 

associated with a highly autocorrelated irregular component estimator. The #��� polynomial is 

also the AR polynomial in (9), the model whose ACF is the WK filter; its roots will determine 

the speed of convergence of the filter, i.e., how many terms are needed for a finite truncation. 
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8 Diagnostics and quality assessment 

The diagnostics of the previous section are based on statistics that, if the regARIMA model is 

correctly specified, should be close to some theoretical values. Ultimately, these comparisons 

are misspecification tests. Obviously, they have implications for seasonal adjustment. For 

example, a high value of the seasonal autocorrelation QS statistics in the model residuals 

indicates that the model has not captured seasonality properly. Or, if the sample and 

theoretical variances of the SA estimator are in clear disagreement, one may suspect some 

adjustment failure.  

It may happen, however, that with no evidence of misspecification, the 

decomposition may be questionable. As a simple example, the model  

�1 � T�P B�P� xJ � aJ 
with T�P � �0.3 has peaks in the spectrum at all seasonal frequencies, but the 

seasonal correlation is small and, in practice, only lasts one year. The AMB estimator would 

imply (as it should) a very erratic seasonality, unrecognizable as such through direct 

inspection. Would it make sense to seasonally adjust the series? Possibly not, because the 

concept of seasonality would seem to be associated with longer lasting inertia. In other 

words, there are criteria that should be satisfied on a priori grounds by a seasonal component 

or a SA series for the adjustment to be justified. Some important criteria are the following. 

(1) The seasonal correlation should last for several years. In TSW, this criterion 

would be satisfied if �+ � 1 or $�P _ C  �C � �0.5 by default). 

(2) The seasonal component should not move too fast. Given that the moving 

features are caused by the seasonal innovation, this could translate into 

Var�a.J� _ C Var�a� . 
(3) Historical estimation of seasonality should be reliable and revisions in preliminary 

estimators should not be excessive. In TSW these requirements could set also a 

limit to the variance of the final and preliminary estimators. 

(4) The delay induced by the phase shift in the concurrent SA series estimators in 

the frequency range of cyclical interest should not be too large. 

One could easily introduce additional criteria (for example, on the autocorrelation of 

the irregular estimator, on the crosscorrelation between trend-cycle and seasonal component, 

on the speed of convergence of the revision, etc.) These quality measures, however, are 

judgmental. In the seasonal AR(1) example, most people would agree with not adjusting when 

$�P � �0.3, but what if $�P � �0.8? The cutting point is unclear.  

In the model-based approach, the variances of the component innovation, 

estimation error, and revisions, as well as the revision speed of convergence, depend on the 

proper model for the series. Thus, for example, some series will require large revisions, other 

will require small ones, and the vague criterion of minimizing revisions is replaced by the 

criterion of “optimal revisions,” tailored to the stochastic properties of the series.  

The characteristics of the adjustment, however, can be of help at the model selection 

stage. If seasonal adjustment is the application of interest and several models seem to 
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provide acceptable fits, looking for smaller estimation error and smaller revision of the SA 

series would be sensible. An example is provided in the next section. 
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9 Outliers and intervention variables 

9.1 TRAMO-SEATS automatic with level shifts 

The EH and TS-0 models do not provide a satisfactory adjustment. The TS-0 model 

overcomes some of the problems but does a poor job with the last 12 months of 

observations. The large negative residuals at the beginning of the recent recession and the 

large positive ones during the recovery period suggests the convenience of introducing 

outliers to capture the big drop at the turn of the year 2008. Thus the two LS outliers of the 

EH model are specified and automatic model identification is performed. The resulting model 

will be referred to as the “TS-2LS model”.  

The ARIMA model obtained is very similar to the TS-0 case. The model orders are 

�3,1,0� �0,1,1�₁₂ and calendar effects are significant. The regular AR(3) polynomial presents 

the same pair of complex conjugate roots, with similar moduli, and frequency close to the TD 

one. Table 1 indicates that the residuals are not autocorrelated and can be accepted as 

Normally distributed with zero skewness and no excess kurtosis. However, the randomness 

in signs of residuals test is again failed, and Figure 4c shows that the residuals for the last two 

years exhibit the unpleasant pattern of the EH and TS-0 residuals. Still, a slight improvement 

is detected in the out-of-sample performance for the last year of observations in Table 1. 

The EIP series provides a good example of the limitations of the automatic outlier 

detection procedure (based on AO, TC, and LS outliers) when the series experiences 

explosive behavior and increased uncertainty in the recent year(s). The TS automatic 

procedure was applied to the first �243 � j, j � 0,1, . . . ,100� observations of the series. For 

series that end before Nov 2008, only two marginally significant outliers are detected. Both 

last for a few periods, and eventually disappear. Then, the outlier for Nov 2008 is concurrently 

detected as an AO and becomes an LS one month later. But, after Nov 2008 outlier detection 

becomes unstable, with LS outliers for Oct, Nov, and Dec 2008, and for Jan 2009, appearing 

and disappearing in several combinations. These outliers disappear throughout 2009, 

possibly as a result of the accumulation of abnormally large values at the end of the series. 

The three types of outliers considered have a difficult time capturing the crisis in a 

parsimonious way. In the example, to model the recent crisis as sudden drops in two 

particular months seems somewhat inadequate. 

9.2 TRAMO-SEATS automatic with ramps 

Direct inspection of the trend-cycle component obtained with the TS-0 model shows a 

spectacular drop in the series, that starts at about March 2008 and lasts for about one year. 

Moreover, the rate of decrease is different for the first and last months within that period. 

These considerations suggest that ramps may be more appropriate than LS to capture the 

recession. In TS, inclusion of outliers in the model is seen as a price paid for maintaining the 

Normality assumption that underlies the likelihood function (also needed for testing and 

inference). Intervention variables are intended to capture some known special effect. Outliers 

should be kept to a minimum and do not require an ex-post explanation. Often, however, an 

explanation is found, in which case it makes sense to replace the outlier with an intervention 

variable. Thus two ramps are entered as intervention variables, to capture the drop at the 

beginning of the crisis.  
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From a first guess provided by the trend-cycle inspection, a comparison of BICs (or 

likelihoods) for various ramps specifications leads to the choice of March and September as 

the starting dates, and of 5 and 7 months for the lengths, respectively. TS was run in 

automatic mode (RSA � 5) with the two ramps. As before, the ARIMA model obtained is a 

�3,1,0� �0,1,1�₁₂ for the logs, with a 6-variable TD, Easter Effect, and the two specified ramps. 

The AR(3) polynomial contains a pair of complex conjugate roots with modulus 0.70 and 

frequency 2.22 that produce again a stochastic TD with an ARMA(2,2) model. The complete 

model will be referred to as the "TS-2R model".  

Table 1 shows that, of the 4 models considered, the TS-2R case produces the best 

results, and the RMSE of the out-of-sample forecast for the last 12 months shows a 

remarkable improvement. Figure 4d plots the TS-2R model residuals: the abnormal behavior 

at the end of the series is no longer present.  

The model for the SA series n�t� is found to be 

�1 � 0.53B�)²n�t� � �1 � 1.49B � 0.62B² � 0.09B³�aB�t�, 
with innovation standard deviation σB � 0.0057. Noticing that one of the roots of the 

MA polynomial is (1-0.92B), the model for the SA series is close to a �1,1,2� ARIMA model 

plus mean. (Interestingly enough, these are the same orders as those of the regular part of 

the model identified by X12A in Section 2.) 

Some relevant features of the seasonal adjustment for the three TS cases 

considered are contained in Table 4. First, given that the standard deviation of the innovation 

in a component measures stability (close to zero innovation variances imply close to 

deterministic components), the TS-2R model provides the most stable SA series and 

seasonal component. The innovation standard deviation also provides a measure of the size 

of the one-period-ahead forecast error of the component. 

 

Table 4: Features of the decomposition. 

Model SE of innovation (in 10-2) 
Concurrent estimator  

(in p.p.) % Convergence of 
revision in one year 

SE of 

m-to-m 

SA rog (in 
10-2) 

 
Seasonal Stoch. TD SA series 

SE of 
Estimator 

SE of 
Revision 

TS-0 0.44 0.18 0.68 0.69 0.60 76 0.58 

TS-2LS 0.43 0.18 0.63 0.61 0.52 78 0.56 

TS-2R 0.41 0.17 0.57 0.54 0.44 78 0.55 

 

Second, estimation precision of the SA series can be measured by the SE of its 

concurrent estimator. Table 4 shows that the TS-2R model yields the most precise estimator. 

For the month-to-month rate of growth, the width of a 95% confidence interval is about l 

1p.p.  
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Third, an additional desirable feature of the SA series is that they require small 

revisions. TS measures the SE of the revisions in preliminary estimators of the SA series. 

Table 4 shows that the TS-2R model has the smallest revisions in the concurrent estimator; 

its variance nevertheless is three times the variance of the historical estimation error. 

Convergence is practically unaffected: for the three TS models, close to 80% of the revision is 

completed in the first year; 100% during the second. 

Concerning seasonal adjustment of the EIP series, what the previous analysis has 

shown is that improvements in the regARIMA model improve the adjustment, that some 

intervention is needed to deal with the recent crisis, and that ramps do a better job than LS 

outliers. Judging from the results obtained with the TS-2R model for the original period of 

concern (Oct 2009-Mar 2010), Table 5 indicates that Eurostat overestimated the SA rates of 

growth, while the EH model underestimated them. 

 

Table 5: Month-to-month SA series rates of growth (in p.p.) for Oct 2009-Feb 2010. 

(March estimate) Oct Nov Dec Jan Feb 

EH 0.0 0.2 0.5 0.4 0.2 

Eurostat 0.3 1.3 0.8 1.9 0.7 

TS-2R 0.3 0.7 0.6 0.9 0.4 

 

Besides seasonal adjustment, other components can be of help in forecasting and 

cyclical assessment. Information similar to that having to do with the SA series is provided in 

TSW for the trend-cycle component, thus the relative merits of both components can be 

compared. In our example, the trend-cycle component is the SA series without a relatively 

small white-noise irregular component. Except for a mild improvement in the SE of the 

monthly rate of growth, and a mild increase in the phase delay (see Figure 13), the trend-cycle 

yields very similar results.  

Further, the trend-cycle component (or the SA series) can be decomposed in turn 

into long-term trend and cycle by means of a model-based adaptation of the Hodrick-

Prescott filter (Kaiser and Maravall, 2005). This decomposition is shown in Figure 14. 

Models for these new components –compatible with the overall model for the series- 

are also derived and, for example, the model for the cycle is 

�1 � 1.92B � 0.93BP� �1 � 0.53B� z�t� � �1 � 0.26B � 0.95BP � 0.32BQ�a��t� , 
with Var�z� � 0.04Var�a�. These models permit the analyst to extend the analysis of 

the previous sections (e.g., distribution of estimators, of estimation and revision errors, and 

forecasting) to the long-term trend and cycle components. 
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Figure 13: Phase delay of finite SA series and trend-cycle concurrent filters:  

TS-2R model (in months). 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Long-term trend and business-cycle factors. 

 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS030) p.2721



 

BANCO DE ESPAÑA 39 DOCUMENTO DE TRABAJO N.º 11XX 

10 Stability of the model-based method 

An objection often made to model-based adjustment is that changes in the model as new 

observations are added may produce instability in the results. To maintain a balance between 

instability and misspecification, it is often recommended that, as a rule, the model be re-

identified perhaps once a year and, for the periods before the next re-identification, 

parameters be re-estimated every month, keeping fixed the general model specifications.  

Since work in this paper was started, 9 new observations have become available 

(period April-December 2010) and we use them to analyze out-of-sample stability of the 

results. Unfortunately, each new release includes revisions of the unadjusted series for 

previous periods. Typically, the revision affects the most recent months, although in May 

2010 it affected the entire series and exhibited a strongly seasonal pattern for the first half 

(see Figure 15). 

 

 

 

 

 

 

 

 

 

 

Figure 15: Revisions in unadjusted series (p.p.): period Apr-Dec 2010. 

Adding the two ramps of the previous section, the automatic procedure was applied 

to the series finishing in each of the ten months for March-December 2010. (The sequence of 

concurrent releases of the series were used, thus revisions in unadjusted data were ignored.) 

The ten series produce the same model (for the logs), namely, the ARIMA  �3,1,0� �0,1,1�₁₂ 
model with 6 TD variables, Easter effect, and no outlier. A summary of results is presented in 

Table 6.  

The model fit, parameter estimates, residual diagnostics, and basic features of the 

decomposition barely change. Figure 16 plots the one-period-ahead forecast errors of the 

(log) series for the nine new months; they are small and random, with SE � 0.0130, in line with 

the in-sample residual SE. Despite the uncertainty created by the crisis and despite the 
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revisions in the unadjusted data, automatic re-estimation every month provides stable and 

acceptable results. The results are identical to those that would have been obtained with the 

rule mentioned above to balance stability versus misspecification. 

Table 6: Results of monthly automatic model re-identification. 

Interval of variation for period March-November 2010 

 

(a) Model fit 

 
SE(res) BIC 

Real AR 

root 

Complex AR root Seasonal MA 

parameter 

Ramp coeff (t-val) 

 mod period 1st ramp 2nd ramp 

min 0.0110 -8.75 0.52 0.70 2.83 -0.37 -3.8 -11.1 

max 0.0111 -8.77 0.54 0.73 2.85 -0.39 -4.0 -11.4 

 

(b) Residual diagnostics 

 Q N Sk Kur Q2 Runs QS 
RMSE (in 10-2) 

(OS forecast) 

min 26.0 1.0 0.6 0.8 15 1.2 0.2 0.7 

max 27.6 1.8 0.7 1.2 16.7 1.8 0.3 1.0 

CV 31.4 6 2 2 34 2 6 1.8 

 

(c) Features of the adjustment 

 SE of innov (in 10-2) 
SE of 

concurrent 

estimator (pp) 

SE of revision 

(pp) 

% 

convergence 

of revision in 

one year 

SE of m-

to-m SA 

rog (in 10-

2) 
 Seasonal 

Stoch 

TD 

SA 

series 

min 0.39 0.17 0.56 0.53 0.43 75 0.54 

max 0.41 0.18 0.58 0.54 0.44 78 0.56 
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11 Conclusion 

In the context of a recent debate among some European statisticians having to do with 

seasonal adjustment of the Euro Area Industrial Production Index, it is shown how the 

regARIMA model-based method of programs TRAMO-SEATS can be efficiently used, the 

results can be analyzed, and the quality of the adjustment –as well as the information the 

adjustment provides- can be improved.  

 In particular, it is seen how, adding two ramps to deal with the abnormal drop at the 

beginning of the recent crisis, automatic use of the programs (that includes automatic model 

identification) provides excellent and stable results (despite non-trivial revisions in the 

unadjusted data). 

 

 

 

 

 

 

 

 

 

 

Figure 16: Out-of-sample forecast errors: period Apr-Dec 2010. 
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