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Introduction

We consider the problem of representing the spatial metabolic activity of sarcomas, an infrequent

form of cancer affecting soft tissue, cartilage and bone. The typical treatment protocol for sarcoma

tumors is surgical resection, generally preceded by chemotherapy in advanced cases. The median

survival time for patients with sarcoma is about five years after surgery. Sarcoma patients are usually

followed using Positron Emission Tomography (PET) scanning with fluoro-deoxyglucose (FDG). Such

imaging data are typically analysed in terms of maximum standardized uptake value (SUVmax) in

the tumor region of interest (ROI) [4]. However, advanced spatial models for sarcoma tumors and

novel quantitative descriptors of FDG-PET imaging data may enhance prognostic understanding and,

ultimately, patient treatment. We previously proposed alternative measures of spatial heterogeneity of

the FDG uptake pattern of sarcoma tumors [4, 8, 7]. This set of measures consisted in measuring the

deviation of the uptake pattern from a simple ideal ellipsoidal form. Here we investigate a model that

offers a refinement of this elliptical representation. Fitting this representation allows the derivation

of novel tumor spatial features to further describe localized variations in the uptake pattern. In this

model, the uptake intensity is analyzed from the central core to the boundary of the tumor. This

approach yields model-derived measures of tumor core non-linearity, tumor phase of development and

lack of fit of the uptake model. In particular, the phase of development measured at the tumor core

is found to be significant in terms of prognosis.

Spatial uptake pattern representation

Let the array {(yi, xi), i = 1, 2, . . . , N} denote measurements of the standardized FDG-PET

uptake values yi over a set of N voxels {xi = (x1i, x2i, x3i)
t, i = 1, . . . , N} in a 3-D region (Ω)

containing tumor mass. The original data points are transformed using principal component analysis

so as to obtain an objective coordinate system for modeling the uptake pattern. This results in a

re-orientation of the tubular mass of the sarcoma tumor, and reduces the effect on subsequent analysis

of variability related to the original field of view (FOV). This principal axis sampling (PAS) is based

on the uptake-weighted mean and covariance of the data

µ =

∑N
i=1 yixi∑N
i=1 yi

; Σ =

∑N
i=1 yi(xi − µ)(xi − µ)t∑N

i=1 yi
(1)

Following spectral decomposition Σ = ΓΛΓt with Λ a diagonal matrix with diagonal entries 0 ≤ λ1 ≤
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λ2 ≤ λ3 and Γ = [γ1, γ2, γ3], the PAS coordinates are x̃i = Γt(x−µ) = (γt1(xi−µ), γt2(xi−µ), γt3(xi−µ))t.

This provides an array {(yi, x̃i), i = 1, 2, . . . , N}. We refer to h = x̃3 as the long-axis of the tumor,

having values within [a, b] (the tumor ends); the short-axis coordinates are (x̃1, x̃2).

To model the spatial dynamics of the uptake pattern within the ROI, we represent the tumor

mass as a set of contour surfaces arranged from the central core to boundary surface of the tumor

mass. Let ch = (c1h, c2h)t represent the short-axis coordinates of the central core of the tumor as a

function of the long-axis coordinate h. The PAS coordinates x̃ = (x̃1, x̃2, x̃3) are transformed to a

cylindrical form (r, θ, h) by

r =
√

(x̃1 − c1h)2 + (x̃2 − c2h)2 ; θ = tan−1
(
x̃2 − c2h

x̃1 − c1h

)
; h = x̃3(2)

In this representation, a star-shaped contour is given by a function specifying its polar radius as a

2π-periodic function of angle. Let us consider the collection of these contours as a function of the

long-axis be denoted by {(σh(θ), θ, h), for θ ∈ [−π, π] and h ∈ [a, b]}. Following this evaluation, we

define the tumor boundary contour on each long-axis slice as the contours corresponding to a particular

uptake level.

The final representation of the uptake data is obtained by a function whose contours on each

short-axis PAS slice are a simple dilation or contraction of the reference contour specified σh(θ). The

uptake level for the dilated or contracted contour is determined by 3-parameter adjustment of a fixed

reference Gaussian radial uptake pattern g(u) = e−
u2

2 . Using this, the uptake at the cylindrical

coordinate (r, θ, h) becomes

y(r, θ, h) = βhg

(
τh + φh

r

σh(θ)

)
+ error(3)

where βh ≥ 0, φh ≥ 0, and τh represent long-axis slice-specific adjustments of the amplitude, scale and

phase of the uptake. The phase parameter τh varies with the shape of the radial uptake pattern, and

depends in particular on whether radial uptake is monotonically decreasing or follows a more complex

unimodal structure. The case τh > 0 indicates a monotonically decreasing radial uptake, from core to

boundary, while τh ≤ 0 indicates a unimodal radial uptake pattern. Note that large βh values should

be penalized within the estimation process, in order to discourage compensation by large values for

τh. We refer to τh as a core-phase parameter, on the basis that early stage sarcomas typically show

a monotone radial pattern and later stage ones have reduced central uptake and unimodal radial

patterns. Similarly, the argument of the function g in (3) also defines a measure of the phase of

development at other points. So we define the local phase at the point (r, θ, h) as

u = τh + φh
r

σh(θ)
(4)

Estimation of uptake pattern characteristics

In order to fit model (3), we need to estimate two subsets of parameters separately so as to

ensure a faithful and meaningful description of the tumor core and boundary. We therefore devise a

two-step estimation procedure for our model, where the uptake data is first binned into percentiles of

the long-axis h, yielding initial parameter estimates for each bin. In a second step, this set of initial

estimates is smoothed in order to provide stable output parameter estimates.

Let h(j) ∈ (H
¯
, H̄) denote the jN

Nh

′
th order statistic of the individual voxel long-axis coordinate

values (h′is). Considering a total numberNh of bins, the j’th bin is then defined by (h(j−1), h(j)] = Binj .

The number of bins may be chosen so that Nh ≈ H̄−H
¯∆x

, where ∆x denotes the within-plane resolution
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of the imaging data. We apply a two-pass approach for each axial bin in order to obtain initial

estimates for the center and boundary contour shape. A weighted smoothing procedure across across

axial bins is then applied to this set of estimates to yield final values. The weights may be chosen to

be inversely proportional to the average model lack-of-it on each axial slice. Boundary contours are

smoothed separately across a discretized set of angles.

Given the elliptical contour shape σoh(θ) = (1 + e cos(θ−ϕ)) for θ ∈ [−π, π] with the eccentricity

(e) and orientation (ϕ) unknown, the uptake data within the axial bin is modeled as a non-parametric

unimodal function of the elliptically adjusted radius ρi = ri
σo
hi

(θi)
where, as in equation (2), ri and θi

depend on an assumed axial center (c1, c2) for the bin. This yields

yi = f(ρi|c1, c2, e, ϕ) + noise(5)

Given data pairs (ρi, yi), let fα be the non-parametric unimodal function estimate obtained for any

particular choice of the four parameters controlling the center and contour shape α = (c1, c2, e, ϕ). A

simple isotonic regression [1] may be used to post-process the B-spline smooth [11] of y on ρ, after it

has been divided into the components that are before and after the maximum. We can then apply a

steepest descent procedure to optimize

RSS(α) =
∑
i∈Bin

[yi − fα(ρi|c1, c2, e, ϕ)]2(6)

w.r.t. α. In order to ensure that a minimum is picked within the interior of the convex hull of the

short-axis data in the bin, we remove the outer fraction of the short axis (x̃1, x̃2) data, using a quickhull

algorithm to compute the convex hull of the set of points of interest incrementally [5] .

We select the boundary surface as the contour level corresponding to a particular uptake level

(l). This value l may for instance be chosen as a certain percentile pl of the uptake distribution, e.g.

pl = 75%. Contouring of the boundary for a fixed axial bin is achieved from the initial shape σohi(θi).

In the polar representation (2), the data points are binned into a set of J sectorial subsets. The j’th

sectorial subset consists of nj values with angles in the interval
(

2π(j−1)
J , 2πj

J

]
for j = 1, 2, ..., J , using

e.g. J ≈ 10. The collection of scaled radii

(
ρji = ri

σo
hi

(θi)

)
and uptake (yji ) values in the sector form a

data array {(ρji , y
j
i ) for i = 1, 2, . . . , nj}. See Figure 1 for an illustration. To find the threshold radial

value matching the desired uptake level, a parametric curve fitted to the noisy data is used to solve for

the (largest) radius corresponding to the specified level. We choose a Gaussian function to construct

the parametric fit, and use

ρ̄j =
g−1( l

β̂
)− τ̂

φ̂
(7)

where (β̂, τ̂ , φ̂) are found by nonlinear least squares (NLS) minimization [2, 9] of

RSS(β, τ, φ) =
∑
i

[
yji − βg(τ + φρji )

]2
(8)

The variance of ρ̄j (w̄−1
j ) is obtained by propagation of errors [2]. Repeating this process for each

sector gives an array of values {(θ̄j , ρ̄j , w̄j), for j = 1, 2, ..., J}. Non-parametric spline smoothing [9, 11]

of the ρ̄-values as a function of θ̄ with weights w̄ is used to produce a correction ϑ(θ|h) to the initial

elliptical contour. This yields the boundary contour σh(θ) = σoh(θ) · ϑ(θ|h).

A final step in this estimation process must be taken to derive estimates for the functional

amplitude, scale and phase parameters in (3). Here also we can carry out an analysis of the binned

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS031) p.2758



long-axis data using NLS to obtain raw estimates, before smoothing over bins using splines to obtain

the set of functional parameters. We use the penalized least squares criterion

RSSγ(β, τ, φ) =
∑
i∈Bin

[
yi − βg

(
τ + φ

ri
σhi(θi)

)]2

+ γβ2(9)

where γ > 0, within each axial bin. The penalty is applied to circumvent the issue occurring when

larger values of core-phase τ are compensated by larger amplitudes β. A possibility is to pick γ in

proportion to the squared coefficient of variation cov of the uptake data in the bin, e.g. γ = 0.1∗ cov2.

The penalty term is entered as an additional residual so a standard NLS code [3, 9] can be directly

applied for optimization. Raw NLS estimates from each axial bin are smoothed using a cubic spline

[9, 11] to obtain the final set of uptake parameters.

Figure 1: Schematic representation of the boundary contour estimation procedure for binned long-axis

data. Left: a particular sectorial ray with fitted model-derived estimates of the boundary radius value

ρ̄j is used for radial analysis. Right: uptake information, represented as a function of the fitted scaled

radii ρi, provides the collection of derived boundary points (black points) that yield the smoothed

boundary contour σh(θ).

.

Characterization of overall spatial tumor features

Three particular measures are of interest for the detailed characterization of uptake patterns

from (3). These measures will further be examined as prognostic variables.

Nonlinearity. We define nonlinearity as a weighted deviation of the central core from a linear

function of the long-axis coordinate, and write it

ξ =

√√√√∑N
i=1 yi [(c1hi − a1 − b1hi)2 + (c2hi − a2 − b2hi)2]∑N

i=1 yi
(10)

where the intercepts (a1, a2) and slopes (b1, b2) are adjusted to minimize ξ.

Phase. Using the measure of local phase (4), we define the average uptake-weighted voxel-level

phase as ū =
∑N
i=1 yiui/

∑N
i=1 yi . This variable allows us to derive various descriptors of the overall
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spatial uptake pattern within the tumor volume. We can consider in particular the core phase, which

may provide an indication of central low metabolism tissues (often observed in advanced sarcomas),

and define two alternatives: the uptake-weighted core phase (ūc) and the profile uptake-weighted core

phase (ũc). These are defined by

ūc =

∑N
i=1 yiτhi∑N
i=1 yi

and ũc =

∑N
i=1 yig(τhi)∑N

i=1 yi
(11)

Model Heterogeneity (H∗). We define a measure of spatial tumor heterogeneity as the lack of fit

of the ellipsoidal contoured model. Let us denote the estimated uptake by ŷi and define this measure

of heterogeneity as

H∗ = 1−
∑N
i=1[yi − ŷi]2∑N
i=1[yi − ȳ]2

(12)

where ȳ is the mean of values in the ROI. This approach is motivated by previous definitions of

heterogeneity measures from spatial ellipsoidal models, see e.g. [4].

Prognostic Evaluation

The proposed sarcoma tumor features were used to carry out a retrospective analysis of a set

of 185 FDG-PET clinical studies of sarcoma patients (70 deaths and 95 disease progression events)

treated at the University of Washington over a 15 year period. Each scan set was performed with a GE-

Advance PET scanner and has a volume with between 35 and 105 image planes with 128× 128 voxels

in each image. Crude elliptical cylinder ROIs were specified using AMIDE, a free viewer for medical

images [6]. Based on this data, we assess the prognostic value of two tumor characteristic features

derived from the proposed model: core phase and spatial heterogeneity. We use a multivariate Cox

proportional hazards regression [10, 9] for this analysis, with standard diagnostic covariates (grade, the

widely used maximum standardized tumor uptake SUVmax, and a measure of spatial heterogeneity)

along with the proposed measure of core phase. The results of this analysis, reported in Table 1,

support the proposition of a prognostic model with heterogeneity based on a crude input elliptical

cylinder ROI and the core-phase variables (uc, ũc). The latter in particular is seen to be strongly

associated with risk. Two alternative measures of elliptical heterogeneity [4] as well as the measure

(12) were used in place of the elliptical heterogeneity derived from the crude elliptical ROI, and proved

to be strong prognostic factors also, with no significant gain observed from one measure over another.

This observation suggests that it may be sufficient to use a crude geometrical ROI instead of a more

finely-contoured one that would require undergoing a time-consuming and subjective protocol, or

indeed to use that measure (12) directly derived from the proposed model (3). Other tumor features

derived from this model also proved significant prognostic indicators in similar multivariate analyses.

A considered extension of this implementation is the incorporation of a regularization procedure to

fit the uptake model, in order to achieve a smoother and more controlled fit to the three-dimensional

uptake pattern.
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Death Progression

Variable Hazard Ratio 95% C.I. Hazard Ratio 95% C.I.

Grade:Intermediate vs Low 2.96 [0.68,12.9] 2.11 [0.85,5.24]

Grade:High vs Low 5.52 [1.29,23.6]* 3.54 [1.45,8.65]**

SUVmax 1.20 [0.93,1.56] 1.05 [0.83,1.33]

Heterogeneity (HΩ) 1.63 [1.24,2.14]*** 1.45 [1.14,1.84]**

Core Phase (ũc) 0.81 [0.66,0.99]* 0.82 [0.69,0.98]*

Table 1: Multivariate Cox regression results for death and progression for N=185 patients (70 deaths

and 95 disease progression events), where hazard ratios for continuous variables account for propor-

tional changes in risk associated with a standard deviation increase in the variables. HΩ is the elliptical

heterogeneity calculated for the simple AMIDE generated ROI. The symbols *, ** and *** correspond

to p-values below 0.05, 0.01, and 0.001, respectively.
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